
N
Lfll

N Woods Hole'
I Oceanographic

DInstitution<DTIC-
ELECTE
AUG1 41990

VOICE - A Spectrogram Computer Display Package

by

Ann Martin, Josko A. Catipovic, Kurt Fristrup, and Peter L. Tyack

June 1990

Technical Report

Funding was provided by the Office of Naval Research through
Grant Nos. N00014-88-K-0273 and N00014-87-K-0236,

the National Institutes of Health through Grant No. 1 R29 NS25290,
and the Andrew W. Mellon Foundation.

Approved for public release; distribution unlimited.

II II I

•~~~ ~ Y fog l I I

WHOI-90-22

VOICE - A Spectrogram Computer Display Package

by

Ann Martin, Josko A. Catipovic, Kurt Fristrup, and Peter L Tyack

Woods Hole Oceanographic Institution | Y

Woods Hole, Massachusetts 02543
6

July 1990 wTl'. TA8 0

U ,o ' ,',Ld Q
J i .,IC j FAB

Uy 0

01'i ibulion I

Technical Report
Availa~hltiy Codes

Dist Soccal

Funding was provided by the Office of Naval Research through
Grant Nos. N00014-88-K-0273 and N00014-87-K-0236,

the National Institutes of Health through Grant No. 1 R29 NS25290,
and the Andrew W. Mellon Foundation.

Reproduction in whole or in part is permitted for any purpose of the
United States Government. This report should be cited as:

Woods Hole Oceanog. Inst. Tech. Rept., WHOI-90-22.

Approved for publication; distribution unlimited.

Approved for Distribution:

Albert J. Williams 3rd, Chairman
Department of Applied Ocean Physics and Engineering

Abstract

A real-time spectrogram instrument has been developed to provide an inexpensive and
field-portable instrument for the analysis of animal sounds. The instrument integrates a
computer graphics display package with a PC-AT computer equipped with an A/D board
and a digital signal processing board. It provides a real-time spectrogram display of fre-
quencies up to 50kHz in a variety of modes: a running display, a signal halted on screen,
successive expanded views of the signal. The signal amplitude may also be displayed. Por-
tions of the scrolled data may be saved to disk file for future viewing, or as part of a
database collection. The screen display may be manipulated to adapt to special needs.
Program source listings axe included in the text...L , A-)1; , /

(c' "/. -

• m~ mmmmnnmnnun nnnn llnli ~ li n 1

Acknowledgments

The development of the VOICE spectrographic display package has been a joint project
between the AEL signal processing group of the AOPE Department and the Marine Ani-
mal Bioacoustics Laboratory of the Biology Department. Funding for the work has been
from the Office of Naval Research under contracts N00014-88-K-0273 (Watkins/Fristrup)
and N00014-87-K-0236 (Tyack), and National Institutes of Health grant 1 R29 NS25290
(Tyack). Support also was from The Andrew W. Mellon Foundation (Catipovic/Martin).
The detailed description of the software development has been primarily by Ann Martin.

2

Table of Contents

ABSTRACT 1

ACKNOWLEDGMENTS 2

INTRODUCTION 5

SYSTEM OVERVIEW 7
Optimizing the Hardware Interfaces 7
Program Structure 8

USING THE SPECTROGRAM INSTRUMENT 13
Installation 13
Running the Program 13
Command Line Options 15
Interactive Commands 17

FUTURE DEVELOPMENT AND APPLICATIONS 21

REFERENCES 22

SOURCE CODE LISTINGS 23

Tables

Table 1. SKY321 Modules 10
Table 2. Installation Guide 12
Table 3. Command Line Options 14
Table 4. Interactive Commands 18

3

I"" "I'' ." I ' ' ' ' ' ' I; ' Fmax 3.01 kHz
..I " °. IAt" * 1

t "1 , I -, I. 4. 1

i

FI~ R

' ',; jo. . . . Fmax = 3.01 kHz

Fmin 8

* ,

s save to file
x exit
F1,F2 left curs
F3,F4 right curs
esc prior screen
del erase bar
enter nezt zoom
space realtime

Legal keys:
FI,FZ,F3,F4

i 1 48 E 112 x, s, h (help)
0 2 U 64 m 128 <esc>,
m 16 B e 144 <space>,<erter>

N 32 CV. E3 32767 _______

The upper panel illustrates a section of humpback whale song in
the memory display mode of VOICE. Cursors bracket the section
that was expanded to produce the display in the lower panel. The
lower panel also illustrates the help and message windows.

4

Introduction

A real-time spectrogram instrument has been developed to provide an inexpensive and
field-portable instrument for the analysis of marine animal sounds. Named VOICE, the
computer graphics display package is a combination of software and hardware components.
The software has been designed so that a user with minimal computer experience can
integrate this tool with a suitable application.

VOICE displays both spectrograms and waveform displays in real time on a computer
screen. Sounds prerecorded on an analog audio tape can be directed simultaneously into
both an ampliher and the VOICE computer. A microphone or hydrophone connected to the
VOICE computer can also be used to display live animal calls on the -creen. The ability to
see the spectrograms of the sounds at the same time that they axe heard greatly facilitates
the identification of patterns that might go unnoticed when scanning depends solely on the
human ear.

The developed tool provides a real-time spectrogram and waveform display, on-line save
buffer editing and disk storage. Some of the instrument's capabilities are listed below:

Continuously digitize an analog channel at an aggregate acquisition rate of 100
k samples/sec.

Compute and display in real time a spectrogram and its envelope waveform with
a clipping indicator at screen scroll rates up to 7 sec per monitor width.

Halt the screen so that a spectrogram can be viewed as long as desired.

Delimit a spectrogram signal with cursors for successive expansions of events
too detailed to be examined in real time.

Customize the screen display by controlling the sample frequency, setting the
number of points per transform, setting the interval betw-en time ticks marking
the elapsed time for the data to scroll across the screen, modifying the levels at
which colors change, modifying the color spectrum.

Save delimited segments of digitized data to disk. The maximum save buffer
length is 384 kbytes.

Replay spectrogram data which has been saved during an earlier session.

The hardware unit consists of a PC AT with an EGA display and hard disk, an analog-
to-digital (A/D) converter board and a digital signal processing board; these added compo-
nents cost about $2500. In addition, a bandpass filter/preamp device such as "Frequency

5

Devices 9002" (about $2800) can be used between the audio tape and the A/D system to
control input gain and to prevent aliasing. The cost is low compared to commercial spec-
trogram machines. The package was tested on a number of portable PC's (such as the NEC
PowerMate Portable), which are well suited for field instrument use. This allows powerful
signal processing and data acquisition capabilities to be brought into the field at modest
cost.

The instrument development was motivated directly by the need of WHOI biologists
to scan extensive analog data sets of marine mammal vocalizations, where the goal is to
extract digital representations of exemplary marine mammal calls. It is difficult for many
researchers to afford the spectrogram analysis workstations that are available commercially.
In any case, such instruments are not suitable for field use, particularly in the remote
locations frequented by WHOI researchers. The developed package allows for efficient data
analysis and acquisition capabilities by Institution researchers at a reasonable cost, and
thus contributes to their overall observational capabilities.

6

System Overview

The main hardware element is a PC-AT compatible personal computer with either an
80286 or 80386 CPU. An 8 MHz machine is adequate, although faster clock speeds and
the substitution of an 80386 CPU result in correspondingly faster execution speeds. The
PC Intel 80286 or 80386 CPU is used as the display and storage controller and system
supervisor. Display on a compatible monitor uses the EGA graphics standard with 640x350
pixel resolution. A gray scale can be used with monochrome EGA, such as that found on
Supertwist LCD and gas plasma screens common to portable computers, but a color display,
which maps signal amplitude to a color palette, makes interpretation easier for the user.

The VOICE spectrogram uses the SKY321-PC fixed-point (integer) digital signal pro-
cessor, which includes the Texas Instruments TMS32010 digital signal processing chip as the
numerical engine. As the data memory is double ported, it can be accessed simultaneously
by the PC and the TMS320. An efficient memory controller can accomplish simultaneous
accesses with only occasional wait states issued to the PC or the TMS320. This efficient
memory management scheme was the primary motivation for selecting the SKY321-PC
add-in board. Since relatively large amounts of data are moved across the interface at each
frame, the data handling efficiency becomes more important than the relative clock speed
trade-offs between various TMS320 chip versions.

The analog data is acquired and digitized by the MetraByte DASH-16 A/D board;
however, any PC-compatible board with a DMA capability can be accommodated. At ac-
quisition rates of up to 100kHz, the DMA overhead becomes significant, adding up to two
seconds to screen scroll time for an 8-bit DMA board. For this reason, PC-AT compatible
boards with 16-bit transfer capability axe preferred.

Optimizing the Hardware Interfaces

For a spectrogram to be displayed in real time along with an audio signal, a fast
scrolling and processing rate is critical; details of the spectrogram would be lost without
this turnaround speed. To achieve this during real-time mode, there are three indepen-
dent subsystems operating: the DMA activity, the TMS320 numerical data processing, and
the CPU data transfer and screen display routines. Care was taken to balance the load
between the TMS and the Intel 80286 processors; the efficient coupling of these two pro-
cessors largely determines the ultimate speed of the real-time display and the usefulness of
the spectrogram. The 80286 is concerned primarily with data formatting and display, the
TMS with the numerical routines.

To reduce acquisition overhead, the A/D board is used in a continuous DMA mode,
where a circular buffer is repeatedly loaded with newly acquired data. Up to 384k (six 64k
pages) of memory storage is made available to the acquisition DMA, and it is continuously

7

filled with the data. The DMA is redirected to a new page after a terminal count (TC) is
received upon completion of a page. The TC is wired to a system interrupt; the interrupt
routine assigns a new DMA page to the data acquisition buffer, and updates the buffer
list. Only one instruction is required to reassign a page: only the page register needs to
be modified. The principal advantage of this scheme is the availability of a relatively large
buffer, with no requirements for external memory cards. The CPU polls the DMA IC for the
most recently written address and downloads the most recently written data segment to the
TMS. When expand mode is entered, the DMA activity is stopped, and the memory buffer
referenced from the last address written. This method is relatively simple to implement, and
guarantees that there will be no lost samples, since the DMA is writing continuously. This
allows for work on complex data sets, such as high bandwidth vocalizations (e.g. dolphin
whistles) or long records such as whale songs.

The PC transfers the data between the circular data buffer and the TMS320. The ac-
quired data typically is offset binary, which is converted to two's complement and normalized
with a software-selectable gain before being downloaded to the TMS.

The TMS320 operates on a data buffer downloaded to its memory and outputs a flag
signifying that a completed data buffer has been placed at a predetermined location in its
memory. The location of the input and output buffers is controlled by the PC microproces-
sor, which implements a double buffering scheme so that a set of output and input buffers
is manipulated by the PC while the TMS320 is operating on a distinct set. The buffers are
flip-flopped at each frame.

Program Structure

The software was developed within the MS-DOS 3.2 operating system using Microsoft
Version 5.0 C compiler and Microsoft Macro Assembler Version 4.0. The Version 5.0 C com-
piler was used specifically to take advantage of the graphics functions that were introduced
at this version level. In addition, routines unique to the SKY signal processing board are
integrated into the VOICE software structure. The SKY321 environment includes a host-
resident SKY321 macro operating system, a SKY321 macro preprocessor, and a SKY321
assembler.

The primary functions of the main program are to control interaction with the user
via the initial command line and the keyboard; output processed data to the screen and,
optionally, to save raw data to a disk file; and to accept and transfer data addresses. In the
initialization section, the program also loads program and data files to the TMS board and
turns on the digitizing card.

The CPU controls all output to the monitor. The EGA driver is accessed directly with
register commands; a fully register-compatible graphics subsystem is required. To address
the hardware through DOS interrupts would reduce the display speed at least threefold,
rendering the system useless for practical bioacoustic analysis. Significant effort was spent
to insure careful optimization of the graphics routines.

The dimensions of the screen affect the display scrolling rate, so they were chosen to
facilitate screen speed, and to allow sufficient space for annotations on the margins of the
screen. The EGA map allows for a screen display of two windows, each with 128 pixel rows,

8

one above the other, along with system configuration information. The writing of pixels
directly to the EGA video RAM is a two-step operation. When each 256-point array has
been returned to main memory from the TMS board, with each element of the array coded
for color, half the array (128 points) is sent as a column of pixels to the righthand end of
the display area, where there is space available for eight pixel columns. When this group
of columns is filled, the entire display is moved left by eight pixel columns, so that the
lefthand array set scrolls off the screen, and room is provided on the right to receive new
pixel columns of data. The factor 8 was chosen because EGA treats 8 horizontal pixels as a
unit; each EGA unit is 8 pixels wide by 1 deep. This characteristic enables smooth scrolling
from top to bottom of a display; however, the application for which VOICE was developed
required scrolling from right to left, the usual convention with bioacoustic/speech analysis
display tools.

The scrolling routine required optimization, as each data point representing a screen
pixel must be physically remapped to a new location at each screen scroll. As the screen
windows are 128 x 480 bits each, and a screen scroll time represents the time for a single
pixel to move across all 480 columns, the screen scroll routine could be a system bottleneck.
Fortunately the EGA standard provides for a 32-bit (8-pixel) move with a single (block
move) instruction, and this allows the screen to be scrolled in three seconds when there is
no other system activity on an EGA system with no wait states at 10 MHz operation.

The screen write commands are not as critical as the scrolling. The bit-mapped data
are written to the screen with direct register command, and the stationary information
outside the windows is handled through the high level graphics library provided with the
Microsoft Version 5.0 C compiler. These screen annotation functions are used to display
cursors, draw and fill colorcoded boxes, and to write prompts and data values to the screen
margins surrounding the spectrogram display.

Interaction between the PC and the SKY321 occurs on two levels, through programs
executed on the PC, and through those executed in the SKY board. The full list of SKY
modules used by the VOICE program is listed in Table 1. The execution of the FFT
processing programs is assigned exclusively to the SKY board. The only role played by
main program VOICE is to download the appropriate program and a sine table for all
transforms up to 1k, during execution. This is done just once, at initialization. A library
of FFT programs is available, reflecting such parameters as the display complexity and
color maps, and the data buffer/FFT size. The PC microprocessor selects the appropriate
program based on the configuration parameters. The TMS320 programs, written in TM S320
assembly language, are carefully optimized, as their execution can be a significant bottleneck
to processing speed. The SKY library function modified for VOICE is FT256, a complex
Fast Fourier Transform. In order to optimize the division of processing resources between the
PC and the SKY board, FT256 was augmented to compute squared magnitude of the FFT
values and to assign color codes to the processed data. The values returned to the PC from
the SKY board could immediately be sent to the EGA display without further processing.
The FFT library function was adapted for the spectrogram display. The program remains
active in the SKY board throughout a session, repeatedly processing data sent to it from
the PC, and returning the output values on command from the main VOICE program.

9

Table 1
Integration of SKY321 Modules with Program VOICE

Description Implementation

fftcolor.320 FFT program executed downloaded to SKY board
on SKY board during VOICE execution

sintab.dat 1k FFT sine table used by downloaded to SKY board

SKY board for FFT calculations during VOICE execution

hsmos.h group of functions to control included in main program
interface (I/O) between PC VOICE as header file;
and SKY board invoked by VOICE program

S32asm.obj linkable SKY object module included in VOICE link
command to enable hsmos routines

10

SKY supplies routines for initializing and controlling the SKY321, the "Host-resident
SKY320 Macro Operating System" (hsmos). The main VOICE program controls execution
of these modules. The file hsmos.h includes 14 functions which start and stop TMS process-
ing, and transfer data between the TMS and the PC. The reference manual gives details
about eight of these functions; we found this scheme to be restrictive, and so bypassed
several of the eight top-level functions to directly address the lower level functions. The
source code is commented sufficiently to make this course of action reasonable. While the
processing program is running, the TMS is stopped briefly by the PC once per data frame
in order to update the input/output buffer locations for the next frame. These parameters
must be loaded into the TMS program memory, and the SKY PC board requires that the
TMS be stopped before its program memory can be accessed by the PC.

Operation of the digitizing card is controlled by a group of C functions from the main
program; they turn the digitizer on or off, and read the last address accessed by the CPU's
DMA. Input data are sent directly from the DMA board to the SKY board, with the main
program VOICE specifying the addresses of the input buffer and the TMS buffer. The
digitizing card and the TMS board thus are coordinated so that data values are transferred
to the main program only once - when they are ready for display.

The source code for VOICE is comprised of the main program and multiple functions
written in both C and assembly language; a brief description of each function is given at
the end of this report. The SKY hsmos.h header file is included in the main program so
that it can be compiled by thr C preprocessor. Each module is compiled using Microsoft C
large model. We collected all object files in a library, vce.lib. Note that the FFT program
fftcolor.320 is not part of the vce library; it is a binary file which was assembled using the
SKY assembler SKYMPP during program development. The compiled VOICE package is
linked with SKY320 object code (S32asm.obj), supplied by SKY. The SKY system requires
that the /ST32767 option be specified during linking. As an example, here is some sample
code to compile a C function named labelv.c, add it to the library, and then link it with
the SKY routines to produce an executable version of VOICE:

CL /AL /c labelv.c
lib vce-+labelv;
link /ST32767 voice+S32asm,voice,vce.lib;

11

Table 2
Installation Guide

MetraByte DASH-16 high speed A/D converter board

Before installing the board in the machine, set the following switches, using a small screw-
driver or a pen. Do not use a pencil.

Base Address switches:
1 - off
2 -off
3 - on
4 - on
5 - on
6 -off

DMA slide switch: level 1
CHAN CNFG (channel configuration) slide switch: 8
A/D slide switch (controls input range): BIP (bipolar)

Gain: Set for appropriate input range

switch +/-lOv +/-5v +/-2.5v +/-lv +/-0.5v
1 - on off off off off
2- off on off off off
3- off off on off off
4- off off off on off
5- off off off off on

SKY321-PC Coprocessor Board

Set data memory base address to DOOO: at JP2, jumper 3 - 4.
Set program memory base address to C800 : at JP4, jumper 3-12, 4-11, 6-9, 7-8.
Install the A/D board and the SKY coprocessor board in any free full-width slots.
Copy all SKY software into a \TMS directory. Copy dsp321.dat from the VOICE floppy to
the \TMS directory.
Test the coprocessor board by running TST321. Be sure the test runs at least twice.

12

Using the Spectrogram Instrument

Installation

Installation of the hardware should be done by someone who is able to remove the cover
from the PC and install the two accessory boards. The MetraByte DASH-16 A/D board has
switches and jumpers that must be set before the board is installed in a slot. Instructions
for setting these are given in Table 2. The A/D system also includes a box external to
the PC, a "Screw Terminal Accessory Board Model STA16". The input cable from a tape
deck or microphone feeds into this box; a ribbon cable from the box then is plugged into a
connector on the edge of the A/D board. This configuration may be modified so that the
input cable runs through an antialiasing filter before reaching the STA16 box. The audio
signal can be heard while the spectrograms are displayed if a split input cable is used, with
one cable attached to the STA16 box and the other to an amplifier. The SKY321 board
must have two base addresses set; it is then installed simply by sliding it into any available
slot in the PC.

In order to run the program, the following files are required in the current directory:

voice.exe main executable program
fftcolor.320 TMS320 executable program
sintab.dat TMS320 FFT sine table

Running the Program

The program may be run simply by typing "voice" from a directory containing all the
above files. An audio line output standard signal (1.0v RMS = 0 dB) at the digitizer input
is assumed. The sample frequency is 50kHz, resulting in a signal display of ten colors
from DC to 25kHz, with the top window displaying the spectrogram of the signal, and the
bottom window showing a narrow waveform envelope, with the clipping window activated.
Default values delimiting each color are 1, 2, 4, 8, 16, 32, 64, 128, 192, 256, 320, and 32767,
which display the optimum spectrograms of ocean mammal sounds. No data are saved.
The program is exited by typing 'x'.

Interaction with the VOICE program is on two levels: through command line options,
and through specified keystrokes while the display is running. The command-line options
configure the system with desired operation details, i.e., optimized parameter settings for
particular animal vocalizations or data acquisition modes. Once running, the program is
interactive through the keyboard.

13

Table 3
Command Line Options

-cc change color map via the colors.dat file

-cli change color threshold level via the levels.dat file

-fi sample one channel; display spectrogram in top window

-flb sample one channel; display spectrogram and a bar graph indicating
RMS signal amplitude (default)

-fle sample one channel; display spectrogram and the lower window of
the RMS signal amplitude

-i # set the size of the incremental step used to read a file of
spectrogram data

-n # set number of points per transform, zero pad the rest (default = 128)

-r assign a file of previously saved spectrogram data to the input stream

-s # set sample frequency in kHz, using an even number; displayed spectrogram
is half the sample frequency (default = 50kHz)

-t # set interval (seconds) for display across top of screen (default = 1.0)

14

Command Line Options

The command line options can be invoked on line at run time, or listed in a batch file
for repeated use. If the system is to be used in one mode only, and ease of use is a prime
factor, the defaults can be changed (in function cmdopt.c) to reflect the required features,
and the software package recompiled and linked. A typical command line might be:

VOICE -fle -t .5 -s 15

This particular line would result in a display of a spectrogram across the top of the screen,
with the waveform envelope in the lower window stretching from one border of the window
to the other; time ticks across the top of the screen every half second; and a sampling
frequency rate of 15kHz (instead of the default, 50kHz).

The display of a spectrogram in the top window, with the signal envelope appearing in
a bar-type display at the right of the bottom window, is the default, specified in the list
of command line options as "-flb". This mode is particularly useful for fast scrolling of a
single spectrogram. When the display leaves real-time mode, and is used to examine data
stored in memory, the bar indicator is replaced with a signal envelope the full width of the
lower window; during memory operations, speed of scrolling is not a factor. The real-time
spectrogram display can also be used with a signal amplitude display which stretches the
full width of the bottom window ("-fle") when the signal waveform is of inherent interest,
such as for voice amplitude analysis, or when it is critical to guard against clipping of the
digitized signal.

The sampling command "-s #", where # represents some number, determines the digi-
tizer sampling frequency. In order to determine the proper sampling frequency for a partic-
ular signal, you must first determine the maximum frequency at which the signal contains
energy. This can be done using VOICE by setting the sampling rate higher than twice the
likely highest frequency of the signal, and then using the spectrogram to measure the high-
est frequency. The sample rate should be set to 2.5 times the highest frequency, or higher.
This is a critical factor in achieving a meaningful spectrogram. For example, a dolphin
whistle with a maximum frequency of about 20kHz produces a clearly defined spectrogram
at a sampling rate of 50kHz. At the same sampling rate a humpback whale song is scarcely
visible; however, if the sampling frequency is set at 2 or 3kHz, the same whale song appears
in full detail. The spectrogram display on screen is half the sampling frequency; a 50kHz
sampling rate yields a 25kHz spectrogram signal. The desired sample frequency is entered
in kHz. Note that the system may not be able to synthesize the exact frequency requested
for all cases, since the sample frequency is derived by integer division of a 1 MHz oscillator.
In that case, the closest available frequency is selected. With the the DASH-16 board, the
maximum sample frequency is 100k samples/sec. If the desired sample frequency exceeds
the board capabilities, the highest possible sample frequency is selected. Once the sampling
rate has been chosen, either by taking the 50kHz default or by using the "-s" option, that
rate remains in place for the entire session. To change the rate, the user must exit from the
program, and start VOICE again.

For very low frequency sounds, the display can also be sharpened by using the "-n #"
command. This selects the number of input points for each FFT; the default is 128 (256/2).

15

The FFT size presently is fixed at 256; the "-n" command establishes the number of points
within the 256-point transform. If n points are used, the rest of the FFT input is zero-
padded. Generally, decreasing the number of points sharpens up the display of broadband
transients at the expense of overall display quality. This effect is particularly noticeable
with very low frequency impulsive sounds, such as fish grunts.

Time ticks across the top edge of the top window mark the elapsed time for sections of
the display to scroll across the screen. The default is for one second between ticks; with the
"-t #" command it can be changed as desired. Choices should be entered as decimals, e.g.,
.5 for half a second.

Data saved to file during a previous session - an operation described in the section on
interactive keystrokes - may be displayed by running VOICE with the "-r" command line
option. The exact format is

voice -r somefileid

A default for spacing through the disk file has been set which provides a display to fill the
entire window width when the source is a disk file of "moderate" size, an arbitrary choice
by the programmer. If the user is faced with a vertical sliver of color when he attempts
to review some saved file, the sived data file is probably far smaller than the "moderate"
size. Such a file can be viewed by using the "-i #" option. The choice of number to replace
the pound sign is an estimate which the user will learn to make with experience. Since the
default "i" number is 138 x 6 (828), a good place to start is 138.

The VOICE package also includes two data file templates which can be used to change
the color spectrum in the spectrogram display - colors.dat - and to alter the levels at
which colors change - levels.dat. They may be modified using any editor to suit the user's
requirements. Note that the choice of levels should be keyed to the output of the FFT
processing, which produces maximum values lower than those of the raw data. Restrictions
on these data files are:

* a maximum of 16 values may be used in each file

* the number of colors and levels used should be the same

* color values following the last used must be "63"

* the level value following the last used must be "0"

If these templates are to be used, the program needs to be informed by the use of the
command line instruction "-cc" for a color spectrum change, and "-cl" for a change in the
color threshold levels.

16

Interactive Commands

The interactive commands are entered on the keyboard while the program is running.
They were designed specifically to make the program easy and natural to use. All interac-
tive messages and prompts appear in a window at the lower right of the screen; if any illegal
commands are entered, a message is displayed, listing the keystrokes that can be used at
that juncture. On-screen explanations of the keystroke functions can be displayed in a help
window which appears when the user strikes the 'h' key. The keystroke list varies depend-
ing on which mode of the program currently is operative; only those commands directly
applicable are displayed. Table 4 summarizes the commands, and flags each command by
mode. If the command is relevant to a running display, while data streams across the dis-
play window, it is flagged as "realtime." This running display can be stopped at any time
for closer examination of a spectrogram in "memory" mode. Commands tagged as "global"
are valid in both modes. During real-time display of data, the relevant commands are
'x', 'f', 'h', 'm', and . This is the initial default mode when the program is started.
If the signal which appears on screen merits closer examination, touching the 'm' (memory
mode) key will halt the flow of new data and invoke a display of up to 384k of data stored
in the program's memory buffer - the same data that was on screen when the 'm' key was
hit. To return to the running display, the user touches the spacebar.

The memory-mode commands are all related to functions which operate on the 384k of
data which were captured in memory when the 'm' key was hit. This buffer full of data
can be recalled to the screen for careful examination, expanded for a study of details, and
saved to a disk file. The commands enabled during memory mode are the cursor keys, 'h',
's', 'x', <esc>, , <enter>, <space>, and the signal gain controls.

Hitting the 'x' key on the keyboard terminates the program and returns to DOS. Im-
proper program exit, such as the use of 'Ctrl C', may leave the data acquisition DMA run-
ning, with disastrous consequences to subsequent operations. If VOICE crashes the system
upon exit, it is probably because the DMA activity was not stopped during a nonstandard
exit.

The 'f' key will freeze the spectrogram display. This feature is useful if a scrolling
spectrogram deserves further scrutiny, or is to be plotted by dumping to a dot matrix
printer. The two requirements for making such a plot are that the printer allows graphics
mode, and that the DOS command "graphics" or "crtdump" previously has been invoked
(usually in the autoexec.bat file). The user should be aware that data will continue to
stream through the memory buffer while the spectrogram display is static on the screen; if
the user's next action is to display the contents of memory, they may be very different from
the screen display at the time the 'f' key was hit. After a freeze screen, the usual action is
to hit the spacebar and return to a real-time display.

Both the save and the expand capabilities of the program depend on an initial display
of the memory contents, which occurs when the user hits the 'i' key. Data acquisition
is halted by this action so that the contents of the memory buffer will be available for a
series of displays, and for saving to a file. The display is calculated so that the spectrogram
derived from data in the memory buffer always fills the screen, no matter what percentage of
the buffer has been filled with data. All the new data in memory scrolls across the screen,
stopping when it reaches the left margin'. If the entire 384k buffer has been filled, the

17

Table 4
Interactive Commands

mode key function

global x exit the program

global h display help window

realtime f freeze the screen (static display)

realtime m display spectrogram of data currently in memory

memory s save data delimited by cursors

memory < F1 > move left cursor to the left

memory < F2 > move left cursor to the right

memory < F3 > move right cursor to the left

memory < F4 > move right cursor to the right

memory < enter > signal that cursor positions are final

memory < esc > recall the pre,.ious screen

global < space > restart the real time display

global < del > erase clipping light below the signal amplitude display

global I increase signal gain by 3 dB

global . decrease signal gain by 3 dB

realtime -- decrease scrolling speed

realtime - increase scrolling speed

18

spectrogram is somewhat compressed in order to fit on the screen in its entirety; however,
if the user should hit the 'm' key before the buffer has been completely filled, only new
data will be used, so that the spectrogram may be expanded as it stretches from one side
of the window to the other. A partial buffer display can occur when a user requests a new
memory display immediately after leaving an earlier display. At a low sampling rate, such
as 10kHz, it takes a long time for the buffer to refill.

When the screen has filled with the memory display, line cursors appear at each edge
of the window. Thereafter several options are available until the screen is returned to a
real-time display: expansion displays of portions of the memory buffer data; saving to disk
file of any portions of that data; redisplay of earlier screens of spectrograms - the "recall"
feature.

The cursors allow the user to take advantage of the program's capabilities for enlarge-
ment. The <Fl> and <F2> keys are assigned to the left cursor, the <F3> and <F4> keys
to the right cursor. Each tap of an F key moves the line cursor eight pixel columns (the
width of a text column). Holding down a key results in a quick succession of moves by the
cursor. When both cursors delimit the portion of the spectrogram that is of interest, the
user may choose to save that portion by hitting the 's' key, or to hit the <enter> key in
order to see that portion expanded to fill the window. This expand capability can be used
on each screen display as the data are enlarged repeatedly. This allows for the examination
of events too detailed to be observed in real time. For instance, a whale click 1/10th of a
second long can be located on the real-time display, but the details of the amplitude and
frequency distribution can be seen only when the spectrogram has been expanded.

Each expanded display fills the screen window completely, from side to side. The entire
display is bracketed by vertical bar cursors which delimit the start and end of the displayed
data. The exact matching of the data display width to the window dimensions enables the
system to track changing start and end positions in the data as the cursors are moved. The
requested data are sampled in 480 evenly spaced data segments, using a calculated step
to advance the starting location of each segment; the screen window is 480 pixel columns
wide. This offset is calculated by dividing 480 into the data length - the number of points
between the start and end of the delimited data. The resulting step value must be an even
number so that the data values can be read in pairs of sine and cosine. If the value is an
odd number, it is decremented to the next lower multiple of 4. In theory, the step between
starting values could be a minimum of 4. In practice, the scheme produces exactly 480
columns of pixel data for interval steps of 20 or greater (at least 9600 bytes of data, or 2400
groups of sine-cosine pairs). When steps are smaller than 20, the need to decrement a step
value combines with granularity problems to prevent division of the available data into 480
even sets. The result is an excess of data columns - too much data. In the example below,
the user has requested 9456 data points.

9456. / 480. = 19.7
Sample period must be 16

With a sample period of 16, the 480 pixel columns would display 7680 points; there are
1776 points left over. One choice would be to lop off the extra data to force an exact fit on
the screen. However, in the interest of veracity we chose to exclude displays which would
overflow past the left margin. When a display cannot be made, a message appears at the

19

lower right of the screen; although the data cannot be displayed, it can be saved to a disk
file. If the save is not wanted, the previous spectrogram is sent to the display window.

The 's' command saves to file the section of data delimited by the cursors. The data
saved is the raw offset binary digitized data. A prompt requesting a filename appears at
the right; the user enters his choice of filename, followed by the <enter> key. If the desired
file already exists, the new buffer is appended to it. This mode is useful, for example, in
cases where the digitized data is sorted by species, such as when scanning a tape containing
dolphin and whale calls. Examples of each can be separated into the respective files and
saved. The disk writing operation begins immediately, as indicated by the message on
screen. When it is completed, the message announces this fact, and the user is then free to
move the cursors for another expansion (if the current display segment is not too small),
make another save, return to the real-time display, or to recall an earlier display.

The "recall" feature is the reverse of the expand operation. After several screen expan-
sions, the user may wish to return to a screen display which occurred early in an expand
series. The display which immediately preceded the current display can be recreated in
the window by hitting the <esc> key. This key can be used repeatedly to step backwards
through the expand series until the original display of memory is reached.

The arrows on the cursor pad may be used to increase/decrease the signal gain in
software - the up and the down arrows - and to increase/decrease scrolling speed - the
left and right arrows. These arrows will work only when the <NumLock> key is off. The
gain is a software value, initially set to 0, which is incremented or decremented by one for
each keystroke; the value can be either positive or negative. The input data values are
multiplied by 2 raised to the power of the gain value before they are processed by the FFT
operation. Note that scrolling speed cannot be increased to more than the default; the
speed increase key is useful only when the scroll speed previously has been decreased. The
gain and the scrolling speed features can be invoked only during a real-time display; they
are not enabled for a display of memory.

Often it is critical to know whether the digitized input signal is clipping. This can occur
when the gain of the analog signdl saturates the A/D converter. A clipping indicator has
been included as a monitor for this condition. It is enabled in the default mode of VOICE
where the signal amplitude is displayed along with a spectrogram. If clipping occurs, the
waveform appears to overflow into a small vertical bar on the lower right of the screen.
When this warning of too much gain has appeared, it can be erased by hitting the
key.

20

Future Development and Applications

The VOICE program, which initially was developed to answer a specific need, has
evolved into a versatile tool for a growing number of applications. Data may be input
from analog tapes, from a live signal via a microphone, or from disk files holding binary
data. All sources produce spectrograms, the main function of the program. Data may be
viewed in a variety of modes - streaming from right to left, halted on screen, or expanded.
Depending on the application, the spectrograms may be viewed with no saved output;
delimited so that specified raw data from the input source is saved to disk file; or the screen
display may be reproduced on a printer. The screen display itself can be manipulated; the
amount of information displayed is determined by the user's choice of whether to view the
signal waveform; and the setting of the interval between the time ticks across the top of the
screen permits estimation of the length of each signal.

At present the program can display one channel of data; the program already has the
"hooks" to add the capabilities of a two-channel and a four-channel display. Sampling
frequency is now limited to a maximum of 50kHz by the A/D board; since the rest of the
system can handle up to 100kHz, this constraint could be removed by use of a different A/D
input board and the replacement of the present data acquisition subroutine in the software
package. Presently the largest section of data that can be saved with a single command
is 384K (six 64K pages), but subsequent saves can append data to the same file; with the
addition of extended memory to the PC and some changes in the code, a larger section of
data could be saved in a single operation.

These are a few possibilities for expanding the capabilities of VOICE. In the short time
that it has been available to WHOI investigators, we have made a number of adaptations,
some as simple as changing the defaults. We encourage potential users of the system to use
VOICE in its present form, or to adapt it to different PCs or boards. Listings of all sources,
the executable VOICE program and required files are available on floppy disk upon request.

21

References

SKY321-PC & 320-PC (rev.4) Reference Manual. 1987. Document #321-PC-
RM-87-1.2 SKY Computers, Inc., Lowell, MA 01852.

DASH-16/16F Manual. 1986. MetraByte Corporation, Taunton, MA 02780.

Disk Operating System Technical Reference, Version 2.10. 1983. IBM Personal
Computer Language Series. Microsoft Corp.

Kliewer, B. D. 1988. EGA/VGA, A Programmer's Reference Guide. Intertext/McGraw-
Hill, New York.

22

Source Code Listings

Name File Description
main voice.c Main program
voice.h voice.h Header file for main program voice.c
keydefs.h keydefs.h Header file for modules getkey, getmem, keys, lcursor, review

blkbox labelv.c Draw a black and white box on screen
boxes labelv.c Draw several columns of color boxes
calcstep calcstep.c Find step to use in memory buffer read
chanenv chanls.c Display spectrogram and signal amplitude
chcolor change.asm Establish color palette
clearhlp helpvce.c Erase "help" window and contents
clearmsg messages.c Erase text from message center box
cmdopt cmdopt.c Handle command line options
dashget dashin.c Get offset for current data
dashin dashin.c Start data acquisition via DMA
dashoff dashin.c Stop DMA data acquisition
delmag delmag.c Delete amplitude clipping light
endint5 endint5.asm End DMA end-of-page interrupt condition
erase erase.asm Erase contents of lower window
getkey keys.c Identify key hit by user
getmem getmem.c Set up for display of memory buffer data
handle handle.asm Handler for DMA end-of-page interrupt
helpvce helpvce.c "Help" window text
kayhdr kayhdr.c Prefixes saved data with Kay Sona-Graph format 5500
keyopts keys.c Enable interactive key options
labelv labelv.c Draw color code boxes and annotations
lcursor lcursor.c Enable movement of cursors
linecurs lcursor.c Draw a vertical white line (cursor)
messages messages.c Text for message center box
movefull move.asm Move data column in both windows to left
movetop move.asm Move data column in top window to left
movtolft bounds.c Find data start and end addresses
movtorit bounds.c Find data start and end addresses
onechan chanls.c Display one frequency channel
putcurs putcurs.asm Draw a vertical line cursor to screen
putlcurs putlcurs.asm Draw a left-bracket cursor to screen
putrcurs putrcurs.asm Draw a right-bracket cursor to screen
putft labelv.c Write sampling frequency value to screen
putmag putmag.asm Draw signal amplitude display to screen
review review.c Read/display data file saved by VOICE
savscr savscr.c Save data to disk file
scrntop screen.asm Draw spectrogram to top window

23

setscr screen.asm Reset palette to default colors

showdat showdat.c Display spectrogram for expand modes

totmsl totms.asm Move data from DMA buffer to TMS memory

txtprep txtprep.asm Configure screen to allow graphics text

24

/* Copyright 4 1989 by A. Martin and .1. Catipovic
All rights reserved.

VOICE.C -

A spectrogram software package designed -for use with a PC-AT
personal computer (with hard disk) that is equipped with an EGA graphics
board, a Sky32l-PC signal processor board, and a NetraByte DASN-16
AID board.

For a full description of the spectrogrm instrument,* a user's
guide, and a description of this software package, see:

VOICE -- A Spectrogram Computer Display Package, by A. Mart in,
J. Catipovic, and P.L. Tyack. 1989. VEOI Technical Report VUOI-90-22.

This version uses the IllS ISIIOS.
NSMOS requirements:

sintab.dat and fftcolor.320 must be available at rutine.
Compile as a large nodel, with hsmos.h and hsmos.def
Link with S32ASN.OBJ, and with /stack:32767

1B: To change the IllS board address for data memory, change:
- hsaos.def
- tinsaddr variable in voice.c

VOICE compile requirements:
voice .h
vce .lib - all object code for this package

#include "voice .h"

main(argc ,argv)
char eargv 0;

short i,j,k,n,a;
int option, dtyp, tmark, nuuchan, dmapgtnp, backoff;
unsigned mnt clrbits, dashtmp =0;
float fmax, ftmp;
time..t start ,f inish;

abaptr - (int e)absaddr;
tknt -cycle -i nm 0;
envelope - j - 0;
speed -gain - 0;
lpl a locparml;
lp2 alocparv&2;
dtyp - 0;
tmark - 0;
scrntlme a 0.0;

/*IIITIfLIZIIGC/

/epick up the command line options, if any, plus some global
initializationso/

if((option - cdopt(argc,argv)) < 6
move - movfull;

else
Move a movetop;

/*Set up the byte count to back up before sending data to tins board*/

25

backoff a 512;
cirbits - Ozfffc; /*create a number divisible by 4*/

if(option - 8)

dtyp a 2; /*saved output is colorcode values, not data -- not enabled*/

/*calculate sampling frequencye/

fiax a (1000./((double)(knuml * knum2)))/2.0;

/eclear TIS data mmoryo/

tusptr = (unsigned e)tmsaddr;
enablepO;

for (iO; i<32000; i4+)
tnsptr[i] = 0;

/*load in Uft program, ainetable and color level table*/
if(option - 2) /s 2 sample channels - not enabled S/

{
/elfile ("ftcolor2.320", 0,100,P00 ; e/

nuschan a Ox1O;
}

else if(option - 1) /* 4 sample channels - not enabled */
{
/elfile(,ftcolor2 .320,0,1500,PNMO); S/
nunchan a Ox1O;
}

else
{
lfile("fftcolor.3201 ,0, 1500,PHEK); /*I sample channel*/
nuchan = 0200;

Ifile ("slnt ab. dat". locparnl (2] ,locparnl [23 2048, DMEK);
writdm(locparml [5] edge .32);

/*wriae labels and annotations to the screen*/

labelv(option);

/lwriae sampling frequency to the screen*/
putft(fmax,scrntime,option);

/eset up for timing ticks on screen displaye/

now - (double)((nesecclockO)/ctick.);

/*EZECUTING*/

if(option < 10)
dashin(abaptr,numchan); /0 get analog datae/

else

revioa(option); /edisplay stored binary file, and exit*/

dashtmp w dsbhgetO;

/eeeeeeeeeeeeeeeeeeeTop of Read-Execute Loopeeeeeeeeeeeeeeee*eee*/

/*set up for keyboard interrupts*/

uhile(1){

iLf(kbhit())

keyopts(nmchan,opt iondtyp);

/*load starting addresses of input data, output, sintable, color lookup
into 30 - 36 of Program inemoryo/

writpm(30,lpl,12);

26

/*Use an KSROS routine to start proc~usinge/
strt32O(30);

I. get the address of the input array so that the TNS can find it:,
dashtmp udashget 0
dapgtap -apage;

/* 'backoff I must be subtracted from the current offset, so the resulting
pointer may be on the page before doapag*e/

while((daahtop & cirbits) < backoff)

dashtmp a dashget 0;

dashtup a(daahtmp - backoff) a cirbits;

absaddr a ((loug)dmapgtmp)(28; /e this defines the segments/
absptr - (unsigned 0) (dashtmp I absaddr) ;/edashtup is the offset*/

/ehere's the pointer for the TNS board*/
tmsptr a (unsigned e)((lp2(O3<<1) I tosaddr);

/*download the data array to memory in the TIS board*/
enable p0;
tmsfmt(abspr~tmsptr~ptknt, gain);

/edisplay timing ticks across top of screen*/
if((double)((neusecuclockO)/ctick) != now)

* now - (double)(newsec/ctjck);
tuark a1; /ake a time tick on the screen*/
I

else
tmsrk - 0;

/*display channels of frequencies*/
chsnnel(tmark);
Wf cycle >-.8)

moveO;
cycle - 0;

for (i-0; i~speed; i++); /*controlled by -,)keys e

/*Read the results from the T11S320 into output array fftvsle/
readdm(1p2(i] ,fftval~ff tout);

/*.swap the location parsmetrse/
ltmp a lp2;
1p2 a lpl;
ipi 0 ltup;

/ewait for T165320 to finish - bit 3 is set in STCRUG(IODASS) e
while((inP(IBASE) a OXOS) - 0);
hlt3200; /* TNS board is all done for this pss*e/

) /eeud of read and execute loope/

In include file for voicec.

27

/0 include filese/

*include <stdio.h>
Oinclud. <stdlib.h>
tinclude (graph .h>

iunclude (conio.h>
U nclude (math .h>
Sinclude ftlmie.l>
Sinclude hamsos.h"
Sinclude "keydefa .h"

/*defines*/
U~f ino NAXSIZZ 512
def in. BUFSZ 20

/*declare functionso/

unsigned int chanenvO);
unsigned it onechanO;
unsigned int twochanO;
unsigned mnt scratopO;
unsigned it scrabot 0;
unsigned it movetopO;
unsigned it novefullO;
unsigned it handle 0;
unsigned it totansI ;
unsigned it totas20;
unsigned it reviewO;
unsigned it (eaov*)0, (*tusftt)(), (schannel)C);
unsigned it daShget0;
it dashinO;

ledeclar* and define some global variables*/
/efor initializations dependent on comand line options. saw cadopt.c*/

it dlpi, slp2, eltop;
it ftsize~fftout ,ptht ,inkey,tknt ,lcol,rcol;
it duapage * dakt, *lineknt, doff inc, knal, kuum2;
it fftva(KAXSIZKJ ,sintab(2048];
it gain, speed, cycle, kay, rAnt a0;
unsigned it edataptr, *oldptr, *abeptr, etmeptr;
unsigned it envelope, doffset, endoff;
unsigned long it nessec, showaddr;
float tic; /suser's choice of time mark spacing*/
double scrntime, Pko.;

clock.t ciock(void);
cloch..t ct ick;

MflE *Stroam;

char fidid[IG]; /efilenme to which data are saved*/
char aevfid[15J;
char fidinDUFSZ]; /*binary Input data (instead of amaog)e/
char color (26] ,color2 (256] ,color3[258] ,color4[256J;
char curcolor;

it locpa=1l 6] a {2048,.6144,12000 .0,0,30000);
it locpaxm2(6J a (4096,8192,12000,0,0,30000);

unsigned long it absaddr a 0z70000000, tmaddr a 0100000000;
it edge (16] - {0z0001, 0z0002. * z0004, 0x008 OzOOlO,

28

0i0020 * OzOOtO, OzOOSO, OlOOcO, * 00100,
010140, Oz7fff,

0, 0, 0, 0);
int colors[16] a (0, S. 33, 1, 9, 43, 15, 47, 61, 45.

37, 0, 63, 63, 63, 63);

#def ine IF 0z100

$define &-UP 72 IIF
#define I-DOW 80 IIF
$def ine K..LEFr 75 IIF
*def ine ZiGNa 7T IF
O4.f ixe K-POUP 73 I F

*define 1.11 59 IIF
#def ine I..F2 60 IIF
*4ef ine KJ3 61 1 IF
*def ine I..F4 62 1 IF

#def ine L.DEL 63 IIF
#def ine K-SC 27
$def ine IEI1U 13
*def ine I-SPICE 32

/*the following are values for lowercase lettersol
* *def ine 1. 102

#def ine I 104
$define 9-1 120
$define 1.5 115
84sf ixe K..K 109

Is DU1RDS.C
bounds. c -- These functions define the start and end locations of a
portion of data (in the emory buffer) that has been delimited with
lixe cursors by the user.

Variables to be def ixed for getmem.c
again - kount of page. to be read CRB: pages are 4,5,6,7,8,9

with beginnixg page contaixing data for the last page,
so that 'again, for 6 pages 6 for 7 iterations, 0-6)

pagenow - start ing page
pagelast- endixg page
doff set - start ing offset
eadoff - last offset

Sixciude <stdio.h>

moytorit Ctoff loopknt ,jkat , ikt page)
assigned int etp. jknt, *pege;
ixt loopkat, ilat;

unsigned int oldi;
int i, J;

/Slots; we mast multiply offset * lcol e8 using nested loops;
else ikint is too big to fit into an ixtegere/

29

iAt - f; /0 8 pixels per coQMM move 0/

for(j - o; J J kt ; J-+)
{

for(1 = 0 ; i < ibmt ; i++)
{
o141 *tupoff;
etipoff a otimpoff + 1;
/*now mast see if tupoff has gone from 65536 to 00/
if(etpoff < oldi)

{
etinpoff a 0
*page m *page + 1;
1f(epage) 9) *page - 4;
-- loopkat;

}
}

}

return(loopknt);

I

/eee**e/

*ovtol:ft (tpof ,loopkt, jknt, ikat ,page)
unsigned int otupoff, jknt, epago;
mt loopknt, i kt;

{
mnt i, J;

ikat *= S;

for(j - 0 ; j < jk-t ; j++)
{
for(i w 0 ; i < ikat ; i++)

{
*tmpoff a etupoff - 1;
if(*tupoff - 0)

{
-- loopknt;
*page a epage - 1;
if(*page < 4) *page * 9;
etpof:f = 65535;

I
}

}

return(loopknt);
}

/eCALcSUEP.C
calcstep.c -- calculates incremental stop to be used when reading data

from memory buffer for options 'save' and $prior' so that
the resulting display will fill the screen exactly.

include <stdio.h)
#include <stdlib.h>

30

Calcstep(kat)
jut kht; /0 'again' in gatm..c C

extern asiged tat doff set, adoff;
'at pegetap, pageikat;
long ussigned tat tapatep, tp;

pageop wkt

tif pagetup - 0)

taipatep m ((uniged i&atza(.ndoff,ddfuet)
(assigned imt)mia(esdoff,doffmet));

tapatop a (((foathtmapU)148.);

else tW pagotap > 0

itup a 65536 - doffact;
tapstop a endoff;

Is see if the two partial pages added together make up more than
a whole page (64k)e/

pagekst =0;

tq~.top * tw
if(topetep > 65536)

pagekat *I
tapstep -. 65536;

tuputep * C((float)tmpstep)/460.) + 0.5 + (pageknte138);

iC pagetup > I)

taputep *= (pagetmp-1) 0 138; I. for dmaknt > 2 .

)CAG.S

;Viere ctlytmpste BAvdoRN.Ti)otne;se vdodie
;sIN optbeadspot Axd 0 4x6,1 oos
-TX ZNI YT ULC$OE

-BSST SKIKNT WOTD PUBLIC 'CODE'

.DATAU ONKIDS _S. DT

31

ASSUE CS:_TIMT. DS:DGRDUP, SS:DGROUP, ES:DGIDUP

-TEXT SINEET

PUBLIC .chcolor

.chcolor POC FAIR
; i holds palette register number
bh holds color value to be used

push bp
SOT bp,sp
push ON
push si
push di

nov di. [bp+83
JECY ex. [bp+8J
mow da, ar

nov dhO
nov cz,16 ;loop counter

cloop:
nov h, 1ob ;set up for BIOS call
Nov al,0
Sov bl, dh ;register to sot
nov bh, ds:(diJ ;color value
it 10h ;eater the interrupt
inc di
isc di
inc 4h

loop cloop

pop di
pop Si
pop so

pop bp

ret

-chcolor IXDP

.TEXT ENDS

UrD

/eCIANLS .C
chamls c -- a collection of routines which control the screen display

of spectrogram data and signal emplitude wavofozrs Cl

usigned ist scrutopO;
tinclude <stdlib.h)

/* default display e/
/0 chanenv.c -- displays one channel of frequencies plus signal amplitude.

Ray also be invoked with comand line options -flo or -fib. Vidth of
wavoorm envelope is determined in main and implemented by move.ce/

32

' ' _nmumn

chmaenytick)
int tick;

exters Imt ptknt;
exters assigned eabsptr;
exterm jut fttalO1, cycle,* gain;
exters char colorl[D;
exterm =rs igned ist envelope;
mat ij;
envelope = i -j a 0;

/*find the signal auplitudOe/
for(± a 0 ; i < ptkat ; i++)

t(envelope < absptr[iJ) envelop. * ibptiJ;

envelope - (envelope - Oz~fff) >> 8;
I. envelope - (envelope - Ozyftf) >> (6-gain); or se this to include gains/

for(j a 0 ; i < 128 ; i++)
colorI(127 -l a] (char)fftval~iJ.

if (tick)

for(i a 124 ;1 < 128 ; 144)
colorl(127-iJ m 63;

colorl[l2T] a 63; /* horizontal bar dividing display screen 0/

ocratop(colonl .cycle);

patmag(&envelope ,cycle);
cycle++;

I. omechan.c -- displays one channel of frequencies a

onechan(t ick)
int tick;

extern ansigned sabsptr;
estern jut fftvalfl, cycle;
extern char colorIfl;
jut ij;
i . j *0;

for(1 0 ; i < 128 ;144)
colorl (127 -] (char)fftvalWi;

if (tick)

for(J m 124 1 < 128 ; 144)
colorl[127-iJ a 63;

colorI(127] a 63; /0 horizontal bar dividing display acreenss

scratop(colorl ,cycle);

cycle++;

33

/o twochn.c -- displays two channels of frequencies (option 2, comsand
line option -f2).*/

twochantick)
ist tick;

extern int fftvelO .cycle;
ezterr. char colorl[3,color2O;
1st ij;
j M 0;
for(i - 0 ; 1 < 128 ; i4.

colon (127-il a (char)fftval[jJ;
color2[127-i3 a Ccar)fftvaltJ44J;
I

if (tick)
{
for(i a 124 ; i < 128 ; £4.)

colori(127-1l a 63;

colori(127] a 63; /0 horizontal bar dividing display screen 5

scratop(colonl ,cycle);

scrabot (color2 ,cycle);
cycle++;

/eCUDOPT .C
cadopt .c - picks up argumsnts entered on the command line at runtine

ad impiaments the uer choices. It also does initialzing
of global variables not initialized in voice .h

Coand line options:
1) -f4 a display 4 channels of sample frequencies - not enabled
2) -12 w display 2 channels of samle frequencies - not enabled
3) -fl a display 1 charnel of samle frequencies
4) -le - I channel of frequencies plus full width of savelepe
5) -fib m I charnel of frequencies, s avelepe a suall bar graph (default)
6) -W - writes files of saved color-coded fft value. (paeceesed data).- not enabled

-k - saved files of raw data are in "Ray" 5100 feinst (headers)
-t S. a interval tics (<I I m .ome sac) for display on screen
-cc a chamge colors via data file Color .dat
-c3l a change contour levela via data file Lovela .dat
-8 S a set sampllag frequency. Default is the maim, 6aMa.
-a # - numer of norda to sed to the TO1 board
-1 8 - $sz of incrawental step for display of $saved' data

10) -r~spaC*><sowef~leid>- r"view 1-chemel data
11) -r2<spac*><sowfilsid~u review 2-chammel data - mot yet iaunmted

Sincludie <stdio .h)
Inaclude <stdlib.b>
Insclude (timle-h

34

cmopt (argc .argv)
char seargv;

oxters char fidiuO.
extern unsigned int onschauO, chanenvO), twockanO), fourchast), (*channel) 0;
exterm, unsigned int doff inc ; /*display increments/
extern =signed int totuslO, tota.20, (stamfat)();
extern iat edge[]. colors[];
oxtern int knam, kau&2, ftsize~fftout, ptkat, kay;
extern clock-.t ctick;
exterm float tic;

FILE etp, efopenO;
char *pi ,*p2.kntpt[3J. n..iiuc[4J;

int datlopt,kkz,z,ux~ny.flAg.i;

/s Default values*/
opt a 5;
channel - chanea;
doff inc a 138*6;
knm a 04;
knwa2 - 05;
ftsize a 256;
fftout 0 fteize;
ptknt n ftsise/2;
tmiafut -totmal;

ctick a Q.IjCIR;
tic a 1.0;
kay a 0;

uhi]le(--argc > 0)

argv+4 ;
again: switch(argv tO] 0])

argy 10J44
goto again;

/*case IV,:

opt *5

break;*/f
case 'k':

key *1
break;

case In$:
pt - katpt;
if (argc >- 2)

argvl4;
awgc--;
p2 a arpLO]1;
while (epi.. ep2..);

ptknt a atoi(kntpt);
if (ptknt < 0)

ptkat a 0;
elm* if Cptkut > ftsize)

ptktkt - ftsiae;
break;

35

case IV':
p1 - newinc;
if (argc: >= 2)

argv++;
azgc--;
p2 - argv(0];
while (epl-.- * p2-+);

doff iac a atoi(neuiuc);
break;

case 'rl:
/* if(argv(oJ(1) - 11)

opt a 10;
tusftt Utotusi;

fftout -ftsize;

else if(argvEOJ Li] - 121)

opt 1;
tmfint a totin2;
fftout a ftaize 0 2;
) 0/

opt = 10;
tmsfmt a totmoi;
fftout = fisize;
p1 a fidin;
if (argc >a 2)

aLrgv4+;
argc--;
p2 - irgvEO];
while (Opl44 = *p244);

break;
case 'a':

khz - atoi(argv[1J);
/*chock for a decimal -- not legal*/
if((atof(srgv[1])) > khz)

printf(\neSsnpling frequency must be an integer.\n");
printf(' Please try again An");
exit (0);

/strap for sampling value greater than 50.1
if((khz > s0o I kbz - 0

printf(\neSampling frequency must be a kilohertz value between 1 and 60. \n");
priatfQ' Please try again An");
exit (0);

flag a 0
wile(flag - 0)

Meind amber which divides into 1000 to give kbz$/
x 1000/khz;
Ax u0;

ny *0;
/*now factor out the z 0
i M 0;

36

for(i - 2 ; i < x i++4)

iW (zi))

xx X /i;
mly * /Ax;

if(ax >a 2 && ny >= 2)

kniinl * x;
kauu2 = fy;
break;

++khz;

break;

ce tic~ - atof(argv[1J);

ctick - CLL.TWlstic;
break;

case If':
/*if(argv(OJ[lJ -u '2')

opt = 2;
channel atwocken;
tusftt a totua2;
fftout - ftsize o 2;

if (argv[OJ[1] - '1')
{

if(argw[oJ (2] - 'o')

f
opt a 4;
channel - chaneay;

I

elseif(rvO2]-')

opt a 3
channel a chaaeav;

Mot a tie

tufiut = tota1;

break;
case PO':

i1(argv[O]Ci] - 'c')

fp 0 fopea ("Color. dtr)
if (fpr -NULL)

priatf(UTnable to open file Colors.dat .\n);

eise /ecolors will accept up to 16 values*/

ga0;

37

while(fscanf(fp,"Zd,AdatI) !w ED?)

colors~n3 a datIL;

fcloso~fp);

else if Carp[0J(13 '1')
4 * fopeaC'leels.dat","r".);
if (fp - amU)

printf (lluablo to open file Levels. .dat. .)
exWIt();

ls /*edge will accept up to 16 values*/

an 0;
whilw(facanf(fp, "U" ,&dat1) !a SD?)

edge~nJ dati;

fclose(:fp);

break;

return(opt);

dashin.c - routine to read up to two channels of DNA data. User my
input parameters addl and sad2 to determine sample frequency
through the rutine comeand line. On each restart after a
memory display, the starting address is page 7, offset 0.

Sinclude <graeph.h>
Unclude <stdio.h>
sinclude <conio.h>

Odef ins BASE Cr310
9def Lu. MMZ 118+2 /eused to establish number of ckannelao/
1ef ins STATUS BASE+8

#def ine CONTULL 315140 /allova ZIQ6 to be set/
1sf ins CTIZN BASE*1O /*couter eaables/
$dsf ins CTRO 3131+12
#def ins CTI1 BA51+13
Idef in CTI2 B181+14
11ef ins CTICOM IT E8+15 /ecounter controls/
SMefine DEACIANUEL 1
#define Dhl*NODE Cr45 /001000101 for single mode select, addreas

incr emnt .10 auto reload of registersiwrite
transfers,chaal 1 select*/

$def ine 3B8SE= 2
1sf ins COUNTING 3

Idef in. P1013KG Cr83 /eDA page register is/

38

dashin (buff oer,chan)
int chan; /*choice of number of channels (6/89 - maz is 2)*/
it ebuffer;

{
iut ij. disabesel, duabaseh, dmacountl, dacounth;
int *statptr;
extern int nual~knum2; /Mfor sampling frequency option*/
extern int duapage;
extern int duautnt;
statptr = (inte)STATUS;

dmakmt - 1;

/* set up the DNA parameters Cl
dmabasel - 0; /*start at the beginning of a page 0/
dmabaseh = 0;
dmapage = 7; /*this RUST be 7; pages a 7,8,9,4,5,6./
dmacountl • Oxff;
dmacounth a Oxff; /etransfer 64k pts Cl
outp(CTREI, 0); /*disable data acquisition Cl

/*program the DNA chip before starting DASH boards/
outp(ll. DI IMODE);
outp(12. 0);
outp(B&SEREG, dmabasel); /*start of memory addreass/
outp(BSEREG, dmabaseh);
outp(COUNTiEG, dmacountl); /*number of bytes to transfers/
outp(COUITREG, dmacounth);
outp(PAGEIEG, dnapage); /*hereafter dmapage is rewritten in handle.aam*/
outp(10, DUCEANIEL);

/*DASH board parameterse/

outp(COITROL, OzD); /s enable interrupt 5 e/
outp(UZ, chan); /* got 1 or 2 channelso/
outp(CTICONT. 0x74); /* ctr 1, mode 0, write unmcut /
outp(CTRI, knml); /* for sampling frequency e/
outp(CTRI, 0);

outp(CTRCOET. Ob4); / ctr I divides by 4 a!
outp(CTR2, knum2); l* for sampling frequency Cl
outp(CTh2, 0);
outp(CTREU, 01); /* start data acquisition 5/

handle0); /* enable interrupt handlre/

return(O);
)
ee**eaeeaaea*w**ee**eeea*eaeeeeaeeae*eeeeeeeeee***eaeeae*eee*

dashoff) {
outp(CTRE,00); /Oturn off the counter enable e/
outp(OxOe, 0000); / reset the DNA chip 0/
outp(OzOd. 0000);

outp(Oxof, Oxff);
}
/eeeeoeeesssssesssseeeeseeseoeaeee*ee*eeeaeeeesee*eeesseeeae/

/eget the most recent address at which data has been received, and

return this offset to use in address calculations. 0/

unsigned int daahgetO
* {

unsigned i,j;

j a ((inp(BASEKEG)) I (inp(BASEDEG) << 8));

return(j);

39

delaag.c -- delete* clipping light; activated by key K-DEL

finclude <stdio.h>
S include (graph.h>

mnt 1, tztcolor;

txtpre$);
txtcolor a .. gtttcolorO;
..etteztcolor(4getbkcolor())

for(iml ; i <= 10 ; i++)

.. etteztposition(i .1);

..outtext(")

-..ettetcolor(tztcolor)

EIDINTS. ASN
;endintS as. -- ends the interrupt condition invoked by handle as.

ZITRI keepip near

-TEXT SEGMENT BYTE PUBLIC 'CODE,
-TEXT ENDS

-.DATA SEGMENT WORD PUBLIC 'DATA'I
-.DATA ENDS

COIST SEGMENT WORD PUBLIC 'COIST'
CONST ENDS

_BSS SEGMENT WOID PUBLIC 'DSS'
.385 ENDS

DGI.OUP GROUP COKST, -ass, -DATA
ASSME CS:-.TEIT, DS :DGRDUP, SS :DGROUP, Z S: DOROUP

-.TEXT SEGMENT

PUBLIC -endiatS
,.endintS PROC FAR

push bp
Sov bp~up
push so
push ci
push di

cli ;disables iaterrupta(int flag set to 1)

40

push do

mow dz, VOID PTR keep..ip ;Prepare to restore offset
SOT ex. VOID PTR keep-cs
SOT do, ax ;prepare to restore segment
MOT ink, 35h ;function to not an Interrupt vector
Slow aI, Odh ;number of the vector
it 21h ;now the vector is rest

POP ds ;restore ds
sti ;Clear flag to enable interrupts

POP di

POP as
mow sp, bp
POP bp
ret

_eudintS endp
-TEXT UNDS

END

,ERASE.ASK
erase. .am

;Vrite directly to the EGA video RAN. This Toutine assumes the video driver
;is IBM compatible and supports EGA mode 101 (640x360. 16 colors)

;erases contents of bottom window (screen-width waveform)
* erase~tert colum number)

-TEXT SEGMENT BYTE PUBLIC 'CODE'
-TEXT EIDS

-DATA SEGMNT VOID PUBLIC 'DATI'
-.DATA ENDS

COIST SEGMENT VOID PUBLIC 'CONST'
CONST ENDS

.JSS SEGMENT VOID PUBLIC '355'

..BSS ENDS

DOXOUP GROUP CONS?, ..BSS, -.DATA
ASSURE CS:-.TKIT, DS: DGROUP * SS: DGROUP, ES: OGROUP,

-.TEXT SEGMNT
PUBLIC -erase

e*rase PROC FAR

push bp
Now bp,sp
push on
push .1
push di
push do

mow dx. 3ceh ;set video write mode 2
mow a1, 6

o ut ds, al
ic dx

mow al. 2 ;video mode 2

41

out dx, &I
mow ax, 0&019h ;point to top left screen corner
now em, ax

;set up bit mask register
ROT di, 3ceh ;point to address register
MOT all a ;bit mask register
out dx, al ;address the register
inc dx ;point to data register
mNow x, Bob ;mask out all bits except bit 7
out dx, a]. ;send data to mask register

;get the bar height to be plotted
mow m, 128
mow dx, 80
Mal dx
add ax; 10240
add mx. [bp+6J
moy dx, ax

put the color into the mask register
mow di, 0 ;color is black

,get the column number where cursor is to be written
mow cx, (bp4'6]
mow bx, cx ;load with screwn colum number to write to
add bx, 10240 ;top of bottom window

;draw a pixel

Coll: mow al. es:(bx] ;fill the latch registers
mOw es: [bx], al ; draw the pixel
mow byte ptr es:EbxJ, 00
add bx. 80 ;point to pixel below
cup bx, di
Jl Coll

colb: mow al, dl ;pixel color
mow byte ptr es:EbxJ, 00
add bx, 80 ;point to pixel below
cqp bx, 20560 -- column bottom
J1 colb

pop ds
pop di
pop si
pop ma
pop bp
ret

-erase KNFDP

END

/*GETflIM.C
getmaw.C -

Sets up for the display of data stored in memory by the
DNA is a buffer up to 3M4 large. Start-and-end addresses (page-offset)
ad count of pages of input data are calculated; then a display loop

42

increments the input addresses and calls uhowdat to display the processed
data at a resolution calculated to exactly fill the screen window.
fB: The DNA controller has been stopped in the calling program. After
each examination of memory, it is restarted by dashin() with page net
to 7, offset met to 0.

Time ticks are displayed at the top of the window for every second,
with every tenth second in double length; if window width contains
less than 4 seconds of data, every tenth of a second is marked with
a half-length tick. IS: The tims ticks in the zoom displays reflect
the tine span required for display of the selected data in real times.

Operations available:

zoom - sequential
redisplay of prior zoom screens (up to 10 levels)
save delimited data to file
zoom; hit 'a' key to save full screen of data
move cursors; save data; hit enter to view full screen of saved data
move cursors; save data; move cursors; hit enter to see subset of saved data
move cursors; save data; move cursors; save data

note: after a)sv' the cursors may be moved either toward the
screen center or toward the side margins

#include <stdioh>
#include (graph .h>
include <stdlib.h>

#include "keydefs .h"
*include *"fcntl .h'
#include "lhsaos def"

fdefine O-jAV O..DINARY
Sdefine enable..pl .stcr((rstcrOASTC-.313) I STC.DPAGE1
*def ise disable..ed. watcr(rstcrOSTC-MM-MASI)
Idefine enable..pO wstcr((rstcrOASTC-31E) I STC-DPAGEO)

idefine VUITE 319
*def ine BLACK 258
dtefine WIDE 828

unsigned int dashgetO;
unsigned int showdat C;
unsigned int (emove) C);
void putcuraO);
int getkeyO;

getmem(choice ,jwp)
int choice; /*display option set in cmdopt (S of channels) n eeded

to funnel into showdat.ce/
int Jup; /*initial offset increment factor 0/

extern char curcolor;
astern unsigned int doffset, doff inc, endoff;
estern long unsigned ist shosaddr,
ester, int dampage, knul, knum2, lcol, rcol, cycle, 0abeptr;
extern int inkey; /*value is established by calling functions/
exters int duaknt; /einitialized to I in dashine/
estern int gain;
extern float tic;

43

/elocal variablese/
static asiped int strtpag. stpage, fitstof, LiStoff, olistep;
static ist kolmter. pusknt;
static struct pshpop{

amigned ins p.s
assigne4 tnt iner;
asigm4 tat ofset;
unsigned Ist offlast;
Int pot;
nlevels [10] .eshich;

double sfroq;
unsigned txt step, papoo, pagelast, strtbyte,. 0byte;
unsigned tat oldeof, opl, p2, tmp3, offseta;
inst Ucolor, location, movkst, firstco., lastcol;
Jut i, J, mark, het, loopso, kt, sk, again, reply;
It teloopep tenth, deci, kten, place, mrazkta;

le Juitia3 *zisr*l

doci - tenth a 0;
place = tenloop a 1;
reply *0;

fiustcol a 0;
lastcol 60;
1oopmo * 0;
ktmu a kt a 1;
again a 6; /*defam lt for 6 pages of raw data*/
oldotf a 0;

ak 1; /etime ticks - either I or 0 0/
step a (usigmedjmp;
streq a (1000000./(duble)(knuml * khan2))); /ohse/
mark m (Cit)(((treq2.0)/(float)step) 0 tic); /eotiaOticks calculatine/

/oeseeeeeeee.eoeoesee eeeeeeeeeeee.eeeees8eee055/

/eeeedefiue the number of pages to be read and displayed, and
the page and offset where data retrieval is to begineeeee/

/.
Variables to be defined:

again - coant of pa e to be read (l: pages are 4,5,6,7,8,9
with beginnin pap containing data for the last page,
so that 'again' for 6 pages m 6 for 7 iteratios, 0-6)

pagnow - starting page
pagelast- ending page
doffset - starting offset
eadoff - ast offset

switch (iakey) {
case 1.1:

/eThis case is A, AYS called first, and sets up the basis for
variable values in the rass of the functioae/

/eet current pag & offset valuese/
pagelast a Cmaigmedomaege;
Stfseta = dashgtO);

emioff *offssa

I*(dakat), 7)
/Oexoma situation -- a full 6 pages of bramd now datae/

again 0 6; /eloep control, 0 - 6 a/

44

pagenow = pagelast;
doffact a offsets;
step - step & Oxfff c; IAevenly divisible by 4*/

else
/*lose than 6 pages of new data. Either

A) the user has hit the 'a' key so soon after the previous
retrieval that the MU has not been able to refill all
six pages, or

B) this is the start of the session, and 6 pp have not yet
been filled. 0/

again a diiakat-1;
pagenow *7;

doffeet *0;

/mst redefine 'step' so that display fills the screen; step must be
less than (138*6)0/
step a (138 s again) + (Coffseta)/480);
step a stop a Ozfffc; /eevenly divisible by 4*/
doff inc: a step;

/esave these permeters for subsequent displays of this meorye/
pushknt a 0; /einitializes at each exit from running display*/
which a Alevels Epuebkt];
which->pge a pagenow;
which->incr - step;
which->ofset M doff set;

*which->offlast = esdoff;
which-)pgknt = again;

break;

came U-SC:
/0 display data fromt the previous screen *
if(pabknt > 0)

which a klovelstpusbknt-1J;
-- pushknt;
if(pushknt - 0) .essages(4);

else

which - blevels~pushknt];
messages(4);

pagenow a which->pge;
step M which->incr;
doffset a which->ofset;
adoff - which->oflast;
again a which->pgknt;

break;
default:

/this takes care of inseys (set inside lcursor), which my be
(enter> 'Ioom" or <0) 'save to file" e/

* /*Bore we adjust address and page kount to match cursor moves.
For iterative zoom , page ad offset are calculated from the
start of the previous soom, NOT from start of buffer*/

/odefaultse/
strtbyte firstoff;
endbyte lastoff;

45

pagenow - strtpage;
pagoelast a Istpage;
again a konter;

minvknt = icol;/e IS: 'mvkat' is the number of cursor moves e/
gai a movtorit(&strtbyte,againoldstep,movknt ,&pagenow);

movkut a 60 - rcol;
again a movtolft (&endbyte again, oldstep ,movknt ,&pagelast);

doffset - strtbyte;
eandoff = endbyte;

/efind the incremental stop to be used, and (maybe) store
all the screen display parameters which have been newly
calculated in "levels" e/

step u calcstep(agaiL);
stop - step A Offf c; /eevenly divisible by 40/

/eif step increment is < 20, there are rounding up or down
problems so that the resulting screen display is not valid.
lowever, a "save" of data is still possible because the
doffset and endoff will be correct. S/

if(inkey !- K.S)
{

if(step < 20)
{
reply = messages(2);
if(reply - I

inkey a K-S;
else

{
messages (9);
/epick up values from pravious displays/
doffset f firstoff;
ndoff * lastoff;
pagenow = strtpage;
again - kounter;
step = oldatep;
)

}
else

{
/estuff zoom praeters ato structure array so
they will be available for the redisplay optione/

if(++puskknt > 9) pushknt a 1;
which &Tlevels[lpskkt];
shich->pge - pagenow;
which->incr M step;
which->ofset a doffset;
which->offlast a endoff;

which-'pokat a again;
)

)/eend of switche/

doffet * doffset A Ozfffc; /eevenly divisible by 4s/

/eeeeeeeeeeeeeeend of defining addresses and page countseeeeeeeeeeeeee/

/eeeeeeeeeeeeeeeeeeeeeeoeee/

/esaving to flee/

46

if(inkey - L-S)

delmagO; /*delete clipping light*/
savecr(pagenos~doffset .edoff~again~step);
diakat - 1;

* returxCO);

/*do NOT save any of the par ame ters below*/

/*Sae some static variable values for the next call to this
function. Done here because pagenow and doff set are
different at bottom of Diaplay Loop from at top'/

firstoff a doffset;
lastoff - endoff,
strtpage apagenow;
latpage a pag~last;
kounter a again;
oldstep a step;

*******************Start of DisplayLopeeeeeeeeeeeeee/

/*Loop from starting place in first page until:
the same place is found, for a full 6 p

or
last offset (endoff) on last page is hit (6 pp)e

/eeeeeeeeeeeeeraethe current cursors***********/
if(iskey != R..u

location *lcol;

putcurs(location);
location - rcol;
putcurs(location);

/05sime initializing. . .

ahowaddr a ((losg)pagenomWc28;
if again < 0) again - 0;

:4k - 0;
oldoff - 0;
cycle a0;
mark u(int)((sfreqe2.0)Ifloat)step) 0 tic);
if nark >- 120) tenth - 1; /*show tenth-of-second ticks*/

/*here so go! s/
for(iftO ; i~magain ; i++)

/edo this once to be sure doffset set > 0 .

/eaking a time ticks/
If(44ioopino - (uarkekt))

place a work s kt;
sk m 1; /emake a time tick on the next loope/
++kt;
kMan n 1;
tenloop a loopno;

47

showdlt (choice osk ,doci);
ask - 0;
oldoff a doflset;
dofst +0 atop;

while (doffst > oldoff)

if(kbkit()

inkey - getkeyO;
switch (inkey)

case 9-1:
goto done; /*exit from yoice*/

case LUB:
helpvce(2); /*help windows/
break;

case &-DEL:
delmago; /6delet* clipping lights/
break;

case I-.UP:
++gain;
break;

case &-.DOW:
--gain;
break;

default:
messages(l); /*legal keys In message centers/
break;

/Olaking a time ticks/
if(loopno - (markskt))

place - mark 0 kt;
ask - 1; /omake a one-second tint ticks/
++kt;
kteu u 1;
tealoop . loopflo;

else

if(tenth)

decd z 0;
uiarkten a mark/lO;
iM(markilO) > 6) 44akten;
Wf (+4tenloop) -u((marktenekten) + (placii)))

Wf ktan <a 9) dci a 1;
44kt en;

showdat(choice,sek~deci);

/eset up for the next loop on this pages/
doci a0;
aek 0 0;
oldoff a doff set;
dofet 40 atop;
if((- again) Mh (doff aet >a eadoff))

48

goto done;
I

)
/eSet up for processing the next page/
oldoff m 0;
+pagenou;
:if(pagenow > 9) pagenow - 4;
showaddr a ((long)pagenov)<<28;

done:
if(cycle > 0) movfullO; /*show the last scrap of datae/
cleamagO; /eerase any neasageee/
daknt - 1; /*get ready for the not call to 'hadle' DNA acquisition*/

/eeeeeeeeeeeeedra the first and last cureoreoeddee*Coeee*eeoedee/
curcolor a WRITE;
putcure (firstcol);
ptcurs (last col);

;iANDLE.ASH

;handles the DNA end-of-page interrupt

extra dmuapage :VOID
eztrn _enta :VOID

.TEXT SIGNET BYTE PUBLIC 'CODE'
-TEXT KIDS

-DATA SGNEST VORD PUBLIC 'DATA'
keep.cs do 0 ;holds segment for replaced interrupt
keep-ip do 0 ;holds offset for replaced interrupt

-DATA KIDS

CONST SEGMNT VOID PUBLIC 'COST'
CONST ENDS

.BSS SEGMENT VOID PUBLIC 'BSS'

.BSS ENDS

DGIOUP GROUP COIST, .BSS, -DATA
ASSURE CS:_.TIT, DS:DGIOUP, SS:DGIOUP, ES:DGROUP

-TEXT SIGENT

PUBLIC keep-co
PUBLIC keep-ip
PUBLIC -handle

handle POC PA

push bp
mvo bpap
push es
push si
push di

;Set up to receive interrupt

49

MOT mh, 36k ;function to got mnt address
MOT mI, Odh ;number of the vector
mnt 21k ;now segment is in ES, offset in BI
MOT keep..ip. bx ;store offset
MOT keep..cs, em ;store segment

push ds ;save 45
cli ;diable interrupts
in ml,21h ;eable interrupt
and mlOdfh
out 21h~al

MOT dxI offset master ;offset of interrupt routine in dx
moy ax, seg master ;segment of the interrupt routine
MOT do, mx ;place in 4*
iNOT in, 26h ;function to set up a vector
mNoT ml, O4k ;the vector number (Th.QS)
mnt 21h ;change the interrupt
sti ;reenable interrupts
POP do ;restore do

SOT dx,318k ;write to DASH status register
zor mimil
out dx,al

POP di
POP si

SOv sp,bp
POP bp

ret ;go back to C calling routine
;with interrupt still enabled

-handle KIDP

;The interrupt routine ... i.e., what to do when an interrupt is found
;dmmkst added to keep track of how saay memory pp have been written to
;since the last access by getmem.c

master proc far

push bp
push ax
push cx
push dx
push bz
push em
push as
push ds
push Si
push di
MOT bp, s

mOT dx, Oak ; clears chmnl I mask register
MOv alA1 ;bit in $237A chip
out di, ml

;we =at go through all these tricks to capture the value of dmapago
;because it is a global variable in masory, and because here we are
am large (far) model

MOT ax, seg .dmapage .;get global duiapage from memmory

50

now em ax ;put segment into em
saw bx. offset _dmapage ;get addresst
nov axes: [bxJ ;get the value of dmapage

;redefine _dmapage to be ready for write
icr ah'ah
inc al

J20 next

next:
MOT es:EbzJ,ax

;write dmapage to DASH pageregister port
zcr ah~ah
nov dx, 063h ;this rets PAGULEG into dx
out dx~ax ;write duapage to pagereg

nov dx,0318h ;write to DASH status register
zcr al * l ; so that data can be acquired
out dx,al

; increment value of global dakat
Nov ax, tomg _dmaknt ;get global duakat from memory
nov *c ax ;put segment into es
nov bx, offset _Auaknt ;get address
nov ax,es:tbx] ;gat the value of dinaknt

Inc &I ; increment
nov es: (bxJ ax ;and update the variable

;end of hardware interrupt
nov al. 020h ;required for completion
out 20h, al ;of hardware interrupts

nov mp~bp
POP di
POP si
pop 40,

pop bx
pop dx
POP ci
pop ax
POP bp

iret
master endp

-.TEXT SIDS

END

/eUIC! .C
helpvce.c -- "help" mans to be displayed when the Ohl key is hit.
0,

include <stdio.h>
include <graph.h>

helpvce(pick)
int pick;

int txtcolor, abbrvcol;

-..mtcolor(63);
-setcliprgnC500 .138,639,260);
..rectaagle(GOIDE1.500,138 .639,260);

txtprepO;
txtcolor a ..gettextcoloro);
abbrvcol - S;
-sottextcolor(txtcolor);
..uettextvindow(11,64,20,80);

if(pick-I

...ettextpoeition(1 .1);

..outtext(" HELP NUI");

.. ettextposition(3 ,1);
-.settextcolor(abbrvcol);
..outtxt(If');
-mattextcolor(txztcolor);
..outtext(l freeze");

-settextposition(4 ,1);
-settextcolor(abbrvcol);
.. outtxt(W);
-.. ettextcolor(tztcolor);
... uttext(I as* memory");

... uttextpoition(S.1);

.. ottextIXI);

...mttxtcolor(txtcolor);

.. outtezt("1 exit");

... etteztpouition(6,1);

..
ettztcolor(abbrvcol);

.. outtet("del");

..ettextcolor(trteolor);

..outtezt(", erase bar");

else if(pick a- 2

setteztposition(1 ,1);
-settoxtcolor(abbrvcol);
.Outtext('");
... ettextcolor(txtcolor);
.. outtezt(" save to file',);

..metteztposition(2 ,1);

.uetteztcolor(abbrvcol);
-anot text("zI) ;
...mttetcolor~txtcolor);
.outtext(", exit");

-settextpositioa(3 .1);
..e*ttextcolor(abbrvcol);
..outtext("71 .72");
setteztcolor~txtcolor);

.. outtext("l left curs");

52

-setteztposition(4 ,1);
-settextcolor (abbrvcol);

..outtext("73,74II);
... etteitcolor(tr-tcolor);
-.outtext(1 right car.);

..settextposition(5 .1);
asetteztcolor (abbrvcol);

.outtet(.aSCI);

a ettextcolor (ttcolor);
.outtext(" prior screen");

... etteztpoaition(6 .1);
... etteztcolor(abbrvcol);
..outtet("del');
-xetteztcolor trtcolor);
..outtezt(" erase bar");

-setteitposition(7 .1);
.. settextcolor(abbrvcol);
.outtezt("enter');
.. setteztcolor(trtcolor);
..outteztC" next anon".);

.. eteztpoaitionC8 .1);

..aettextcolor (abbrvcol);

.. outtet("spacell);
-.. ettextcolor(trtcolor);
.outtezt(, realtime");

/Oclearbhlp.c
Totally erase top level help menu area, border &lines 11-20,
columns 64-86:.

0/

*include <graph.h)

clearklp()

int titcolor, i;
..setcolor(0);
-rectazile (-GEORDfl, 500,138,639,260);

titprepO;
txtcolor a..gettextcolorO;
..aetteztcolor(.getbkcolor())
-.. ettextvindow(1i,64,20,8O);

for(i1 1; i < 9; i4-

.setteztposition(i ,1);
-outteztC (zxhxxzxxxrxzxII);

-settetcolor(titcolor);

53

kayhdr.c -- Vriteu headers to output files of raw spectrograft data so
that said files csn be read by the lay Sona-Graph
Vorkstation, format 5500.

Siuclude <stdio.h>
Sinclude (stdlib .h>

kayhdr()

extern FMLE estrean;
extern int knal, bu2;

unsigned int hertz;
long int place; /efseek requires this to be lone/I
float khortz, tophertz;
tupo N 0; tupl a 1;
khertz a (1000./C double) (kuaIekrnu2)));
taphertz - (unsigned int)khertz * 1000.;
hertz a tuphertz / 10.;

/*write 512 zeros to push EOF forward before starting a 'seek' .
for(i = 0 ; i < 512 ; 14.4)

place = (long)i;
Iseek(streau,place ,SEEK..SET);
put. (tmpO ,streaK);

rewind(strems);

place a 24;
fseek(atrea&place ,SEEKSET);
fputs("121,strem); /*bytes 2S-26e/

place =38;
fseek(stream~place,SEEK.SET);
putu~tapOstream); /ebytes 39-40e/

place - 64;
fseek(streaamplace ,SEEK..SET);
fputs(SSOOSD,stream); /*bytes 66-70.1

place w 70;
fseek(atrem,placeSEEI-SET);
putw((long)tumpl~stream); /*bytes 71-74e1

place w 120;
fseek(stremplace ,SEK-SET);
putw(topl~strm); /*bytes 121-122.1

place - 122;
fseek(stresplace,SEM-..ST);
putw(hertz~stresm); /*bytes 123-124./

place = 124;
fsoek(streemplace ,SEEI..SET);
teag a -32000;
putw(temp,tre); /sbytes 126-126*/

place = 126;
fsek(stremsplaceSEEK-SET);
temp - 32149;

54

puts (tamputrems); /*bytes 127-128*/

/*Bytes 129 - 150 have already been filled with zeroes; these are the
fields for "spectral" data; we are saving "sample" data instead*/

/*Space forward to byte 512, where data will b~gino/

place a 512;
fssek stremplace ,SEEKI.SET);

return(0);

/slEYS.. C
keys.c -- Functions to read keystrokes, and to determine actions to be

taken, depending on which keys are hit.

$ include l"keydefa .h"

/*Getkey -- returns code for single combo keystrokes
unique code for each keystroke or combination

linclude <dosh>

*define KEYII 0z7
$define LODYTE OzOOFF

int getkey()

in% cb;

/enorual key codes*/
if((ch - bdos(K M E. 0, 0) a LOBYTE) 1\1

return(ch);

/*convert scan codes to unique internal codes*/
roturn((bdos(IBYII, 0, 0) & LOBYTE) X F);

/s keyopts.c -- key options which control progress of Voice during
execution.

finclude (stdio.h>
* Oinclude <graph.h>

#include <conio.h)

#efine mrVDEt (13806) /*divisible by both 2 and 40/
*define WRITE 319
Idef in. BLACK 256

void putcursO;

55

void delstag();
void Icursoro;
unsigned iut endintS C;
int getkeyo);
int dashoff 0

keyopts(chouh-t choice .fors)
int chankut; /*sam as numchan jin main C
jut choice; /display option set iu cmdopt (S of channels)*/
jut form; /*saved output data is raw data or colorcodesol

extera unsigned jut eabaptr. doff inc;
erters. long unsigned jut absaddr;
extern int speed, gain, inkey, tkat, lcd,. rcol;
ext ern char curcolor;

jut txtcolor, location, i;
unsigned int xncr;
musigned jut dashtup - 0;

icol a 0;
rcol - 60;
incr - EXVIDE;/defaulte/
curcolor a UNITE;

inkey a getkeyO;
switch (inkey){

case 9-I:
quit:

andint5O;
dashoffO; /0 turn off the DNA loop *
.clearscr*@n LGCLEARSCREE3);
-displaycuraor(-OCURSOII)
aetscr C;
-setvidoode(DEFAULTNODE);
exit(0);

cane IJJP:
-4gain;

break;
case I-DOWN:

-- gain; /*allows negative gain*/
break;

case K-LEFT:
if (speed > 256) speed -a 256;
else speed a 0;
break;

case K..UGNT:
speed +- 256;
break;

case I-DEL:
delnagO; /'delete clipping light*/
break;

case K..F:
endintSO; /*stop DRAe/
dashoff 0;
while(getkeyO != K..SPACE)
dashin(abaptr,chzakt); /*restart DNA*/
tkat m 0;
while(dashtnp < 512)

datup - dashget0;

56

break;
case LB:

helpvceo();
break;

case I_:
endintSO;

dasixoff0C;

clOSxmsg); /*erase existing message windowe/
clearbip(); /*erase main help menu*/

doffinc a EIVIDE;

incr a doffinc;

lcol = 0; rcol a 60;

gettem(choice ,incr);

lcursorCO;

1e0N: the following inkey values are entered in lcursore/

while(inkey !- I-SPACE)
{
/* allow repeated zoom e
uhile(inkey - I.ETU)

get.m(choice,incr);/ecalculate the start and
end offsets and pages, and
display the delimited signals/

lcol a 0; rcol a 60;
lcursorO;

}

/0 allow repeated saves to file e/
while(inkey -. S)
{

getmem(choice,incr); /eno new display*/
lcursorO;

I

/* send the previous display to the screen e/
while(inkey - K.ESC)

{
getmem(choice,incr);
icurserO;

clearmg(/e erase contents of message center e/

if(inkey - .X)

goto quit;

} /eend of !wISP*CE loope/

/eeeeeeereset at end of memory display(.E) eeeeeeeeeee/

/erestart the A/D boards/
doffinc a EXIXDE;

dashin(absptr,chanhkt);
tkt a 0;

/eDo same introductory loops to prevent garbage data
(retrieved from BEFORE the first save-buffer) from
being displayed.*/

57

while(dashtup < 812)
{
dashtmp a dashet (;

}

/*eras* the old cursorse/
location = rcol;
puturs(leocation);

location a lcol;
putcurs (location);

/*erase wide waveforue/

if(choice 5)

for(i= ; i < 60 ; i++)
erase(i);

deJlnag();}

/eerase help display*/

clearhpo;

/*put a cursor at start of running displaye/

linecu"O;
break;

default:
esoages(3); /*display of legal keys*/

break;

) /*end of outside switch */

/ee**eu*e*e*eeeeeee***eeeeee*eee***e*****eeeeeseeeeee.eeeeeees/

/eeeeee*eeee*eee**eee*i*eee..*eeeeeeeeeseee.eest~..~eeee..ee,****/

/*LIBELV.C
Graphics routines to establish and display annotations before
start of spectrogram display:

labelv
bozes
blkboz

putft

Include <stdio.h>
Include <graph.h>

int rov,trowl,tcol1 ,z1.iyl;

/. labelv.c - writes labels to screen for main VOICE using Microsoft
C version 5.0 graphics. There are 8 pizels/colum, 14 pizels/ro.

note: the 4-channel display (disp = 1) is not yet impiesateds/
/.e*eeeeeee..*eeeeeee*e*eee*eee*seee*eeeeeeeee..eeeeeee..eeeeeeeee./

labelv(disp)
int disp; /*this is "option" in main, and is set in cndopt $/

58

{
extern int edge[;
extern it colorso ;
int ij;
lit y2;
int oldcolor, colortxt;
lit col] ,boxh; /*number of colums, number of boxes aeedode/
char tbuf[];
char boud[6] ;

/Iinitilize for Kicrosoft graphicse/

.setvideomodo(.-EESCOLO); / must do this before settig the palettoe/

/e*set up and display voltage color code boxes with anotationseee/

oldcolor a (4etcolorO); /esave the current default color*/
chcolor(colors); /oest up the color palette*/

/*set up for alternate display scramse/
if(disp !a 1) /eoe and two channel displaye/
{
_eotcliprgn(0,256,640,350);

trowl - 22;
xl 2;

iyl - 294;
tcoll - 4;
colk = 2;
boxk a 4;

}
else

{ /*four-channel display*/

_gotcliprgnC(04,0.640,380);
trowl a 18;
xl 6 512; /s 0 8 pixel/colme/
iyl - 196; /0 614 pixels/row, this is row 14e/
tcoll - 68;

colk = 1;
boxk a 10;
)

/eestablish the area where all these boxes will be written*/
.Jettewtwlidow(trowl ,tcoll ,(trowl+boxk), (tcoll+8));

/eow waks the boxes and annotate then . . . 5/

/*first output a black box enclosed by a white border*/
row a 1;
blkbr(O);

/eNext complete 3 more boxes in the first colune/
for(i a 1 ; I < 4 ; 144)

{
.setcolor(i);
y2 a iyl + 11;
.rectm gle(_G7IN 01,zI,iyI,(x1+18),y2);
.sttewtpoeitioa(i+1,2);

itoa(dge[i] .boundl10);
.outtezt(bond);

iyl a y2 + 3;

/*Do the rumliing columuse/

if(colk > 1)

{

59

xl a 160;
iyl1 294;
tcoll so 20;
row-I

else
row w5

box.. (colk ,bozk).

/oFinish colorcode section by resetting the default background color*/
.. setcolor(oldcolor);

/eeeeeeeeeeeeeejndof annotated bzaeeeeee~eeeee

/*met up text colors/
colortzt a (10);
... ettertcolor(colortit)

/see Annotate the sample rate so/
if(disp -1) /e 4-sample displays/

-setteztinow(1 ,64,4,S0);
-setteztposition(1 .1);
..outtext('FMax * hz");

alst Ie or 2 -mample displaye/

settoxtuindow(1,64,10,80);le Col 63 is first usable col for text*/
.. settextpoaitiou(1 .1);
-outtext(PFaaz a klz");
settextpoaition(9,1);
.ottextC"Fain - 0"1);

/***set up a Message Center**/
.. setcolor(63);
-rectangle (.ADOEDEE.5600,* 266A,639349);

/draw horizontal line between annotations and display area*/
-.noveto(1 ,266);

.linoto(480,265);

/eboxes c - draw and annotate "colnt" columns of "bxknt" color
codes in each column.

boxea~colkut ,bzknt)

int colkt,bxknt;

exters, mt row ,xl .1trovI ,tcoll edge[3;
int i,j,z2,y2,end;
char bound:SJ;
end a 0;

for Qj a 0 ;j < colknt ;j'~

end on 4;

60

etteztwiadow(troul ,tcoll,*(trovl~bzknt),*(tcoll*8));
x2 a x1 + 18;
for~i m end ; i< ead~bzknt ; i++)

if(dge(1+1J <a 0) gets lastbox;
y2 - iyl 4 11;

* .setcolor~i);
-rectangle (..FILLIITKIOR, zl ,iyl ,z2.y2);
..ettestposition(row .2);
itoa(edge~iJ .boumA,10);
-outtext(bound)
171 a y2 + 3;

iYi a 294;
tcoll eCs 20;
row -1

lastbox: blkboz(i);

Iblkbox.c -- output@ to screen a black cube outlined by white.

blkbox(aftekht)
in% edekat;

char bound[S];
int blkbord;
extern int rou,trowI,tcoll,xl,iyl,edgeD1;

-setcolor(63); /*eeds to be set to bright white for the border*/

_s*ttextposition(rou .2);
itoaC*4g*[edgekntt ,bound,10);

.. outtext(bound)
171 - 14;

/* putft.c -- writes value of frequency to specified location on screen.

putft(freq~m~cdif ,digp)
double swcdif;
float freq;
int disp;

char secamds[63,frqmax[6J;
int precision a 3;

/*f ix up the screen for writing an NBC Graphics lab*le/
txtprepO;

gcvt~freq,precision,frqnax); /econvert argI from double to char*/

/eput max frequency on the y axis*/
-.settertwidow(1 .64,2,80);
.. settestposition(l ,s);

61

..outtext(frqMaz)

IeLCTJKSOI.C
lcursor.c -- writes 2 cursor lines bracketing halted running display.

Allows user to shift cursors left and right.

Function keys:
F1 - left cursor moves left
F2 - left cursor moves right
F3 - right cursor moves left
F4 - right cursor novas right

Defaults:
lcol a 0
rcol a 60

Unclude (stdio.h>
#include (graph .h>
* include "keydefs .h"

$define ITE 319 /0 this is 63 + 258 e
define BLACK 256 /e this is 0 + 258 C

void putcursO;
int getkeyO;

lcursor()

extern int lcol~rcol, inkey~e
extern char curcolor;
int i, J, location, tztcolor, trapflg, pxcol;
curcolor - UIITE;
trapflg , 0;

while(1)

if(kbhit()

inkey - gstkeyO;

"wItch (inkey)

case -Fi:
if(lcol > 0)

location a lcol;
putlcurs(location); /*erase current white cursor*/
--lcol;
location a lcol;
putlcurs(location); /*write white cursor in now position*/

break;
case 1.72:
location I col;
if(lcol -*0)

putcurs~location);
els*

putlcurs(locat ion);

it(++lcol >= (rcol - 3))
{
printt("\a") ;

-- icol;
}

location = lco;

puticurs (location);
break;

case IF3:
location * rcol;
if(rcol - 60)

putcurs(location);
else

putrcur locat ion);

if(--rcol <- (icol + 3))
{
prixtf("\a");
4
rcol;

I

location a rcol;
putrcurs(location);

break;
case _F4:
if(rcol < 59)

location a rcol;

putrcurs(location);
++rcol;

location - rcol;
putrcurs(location);

}
break;

came I-E..L:
de)ago; /odelote clipping light below amplitude waves/
break;

case I-_:
helpvc,(2); /erite to the 'help' uindowe/
break;

case K.:
if(trapfig)

clearmsgO;
return; /*shut down the program*/

ease i..S:

if(traptlg)
cleazlsgO;

return; /esave delimited data to file*/
case I.SPACE:

Wi(trapflg)
cleazzsgO;

return; /Oretu to running displays/
case I-1STUiU:

if(trapflg)
cleamugO;

return; /ezoom display the delimited data*/
case K..SC:

if(trapflg)
clea-u (g);

return; /*show the previous screen displaye/
default:

messages(l); /edisplay legal keys in message centers/

63

trapflg a 1;
break;

}
}

}
}

/eee*e/

/*linectars.c -- displays a vertical white line as a cursor.
This version good for one-channel display only.

C/
/eeeeeeeeeeeeeeeeeeeoeweoeeeeeeeeeeeeeeeeeeoeeeeeeeeeeeeee/

unsigned int scrntopO;
unsigned it (*wve) 0;

linecursO
{

extern char colorlO;
extern int cycle;
int i, j;

for(juO ; j<128 ; j++)
colorl[j] - VNITE;

scrntop(colorl, cycle++);

if(cycle >- 8)
{

I
cycle - 0;
move() ;

I

/**C***********e**eeC****.CeeC*e*eeeeeeeeeeeeee*Ce*.e**/*

/****************C**e~*eee*ee*e**ee*************ee*ee*******/*

/*RESSIGES. C
messages.c -- Functions to write to and clear messages from the Voice

message center. Message box was created in function
labelv.c, with pixel dimensions 500.265 to 639,349
0 8 pixels/col, 14 pixels/row.

$include <graph.h>
Siaclude <stdio.h>

nessageas (pick)
int pick;

extorn char fididO], newfid(];
int reply, answer, txtcolor, nucolor. i;
nucolor = 5;
answer 0 0;

txtprepO;

64

tztcolor a -getteztcoloO;
esettertcolor (tztcolor);

-ettuisdou(20,64.25,80);

cleagO; /*get rid of smy current mossagese/
priatf('\a"); /eriag a bean*/

if(pick -I)

/*display smes of keys legal during memory buffer displays/
esettoztposition(I.I);

..outtozt(Il Legal keys:");

.. sotteztpositioa(2,2);
-.outtozt("FI .72,73,74");
-.. etteztpositioa(3,2);
..outtozt("Z, a, h (help)');
.. setteztpositioa(4.2);

..setteztposition(S.*2);

-oattert ('(space> ,<eter>");

else if (pick - 2)

/*a*=u limit waraiage/
.. etteztpositioa(1,i);
.outtezt ('No zoom display.");
-settortposition(3,1);
-.outtet(Filosav*?(T/N ")

.settertpositioa(4,I);

reply a getchO;
if(reply - Y' 11 reply - y')

answer *I

else if (pick -3)

/*display ames. of keys legal during realtime display*/
..setteztpositioa(1 .1);
-.outtext(" Legal keys:");
-sotteztpositiou(3.2);
..outteazt("h (help));
-setteztpositioa(4.2);
..outteztC"f, a, X,");
-nettextpositionC5 2);

ele if (pick -4

/etell user he has popped back to original display of meaory*/
.. setteztpositioa(2.I);
..outtezt(" Primary memory)
.. settertposition(3,1);
-outtei-t " display");

else if (pick - 5)

Ieor filesave 1/0*/
... ettextpositios(2.1);
-outteit(' File ID?)

65

.. Setteztpositiou(3, 1);

..outtezt(", wl);

else it (pick -a 6)

/eor filesave 1/0*/
-.settetposition(1.2);
.outtext(newt id);
.setteztposition(2,i);
-. outtezt("This file-);
-settextpositioa(3,I);
.outtaizt("contains data.");
.settetposition(4,i);
.outtent("ppend? (YN)");
.setteztpogition(S .1);

reply a getchO;
if(reply mu'V 11 reply 'a'

answer 1;

else if (pick -7)

/etor filesave 1/0*/

/*display the tileamee/
.. eetteztposition(2.);
.outtezt("Th* save file is");
.setteztposition(3,2);

.. uttext(neuid);

/egive a progress report to the user*/
..setteztposition(S, 1;
.Outtext (Save in Progress");

*lse if (pick -- 8)

/eor tilesave 1/0*/

/*display the filenumee/
..setteztposition(1 .2);

-outtext(
new id);

/*give a final progress report to the user*/
-settoxtcolor(nucolor);
.. settextposition(5,1);
..outtext ("Save completed");
..settetcolor~tztcolor);

else if (pick - 9)

.. settextpositioa(3,1);
.outtezt ("Showing "1);

- ettextpositiou(4,i);
.outt ext (previous display");

else if (pick -u 10)

.settextpositio%(2,1);
-outtext("This tile");

66

-s.ettextpositionC3.);
..outtext(contains data.)
_settextpositiou(4,l);
..outtert(EnFter now fie*);
..settertPosition(Sl);

else if C pick mu 11)

..setteztposition(2,l);

.outtert("Io data saved");

returu(answer);

/*cleaxmag. c
Clears out any messages written to screen in message area lines 20-25,
colums 64-80.

clearusg()

int txtcolor, i;

txtprepO;
txtcolor a -.gettextcolorO;
.settextcolor(..getbkcolor())
-.settextwlindov(20,64 .25,80);

for(jml ; i<6 ; j4-

,.stteztpouit ion Ci,1);
.. oUttezt (zxzzxxxxxxxxxxz);

-.settextcolor(txtcolor);

;IOVE.ASN
M oves an 8-pizel colum of data (written at righthand side of display

*window) to the left, allowing more data to be written on the right
*without overwriting existing data.

-.TEXT SEGMENT BYTE PUBLIC 'CODE'
-TEXT ENDS

-.DATA SEGMENT VOID PUBLIC 'DATA'
-.DATA ENDS

CONS? SEQUEST VOID PUBLIC 'CONST'
CONS? ENDS

..BSS SEGUENT VOID PUBLIC '355'

..BSS ENDS

67

DGROUP GROUP CONST, * .SS, -DATA
ASSUME CS: .TKXT, DS:DGROUP, SI :DGROUP, ES: DGROUP

-.TEXT SEGMNT

PUBLIC _novetop

_novetop PROC FAR
push bp
nov bp,sp
push 88
push si
push di
push ds

ROT ax, Oa0l9h ;video ra bass
nOv as, ax ;set up segnent pointer
nov din, ax

fOT dx, 3ceh ;set write nods 1
Nov al. 6 ;index register 6
out dx, al ;send the index
inc: dx: ;point to node register
ROT al, 1 ;choose nods 1
out dx, al ;set the node
cId ;clear direction flag (autojuc. Mors)

nov bi, 0 ;bx points to row
noy dx, 61 ;number of columns to move
Bov bp, 80 ;next row pointer

newrow:
ROv di, bx ;di a destination
ROT ai, di
inc .1 ;ai a source
nOv cx, dx ;cx a column counter
rep novsb ;move over 1 row
add bx, bp ;point to next row
Ca bx, 10240 ;done with all rows ?
jie newrow ;no, go do next row

POP do
POP di
pop ci
POP as

POP bp
ret

..novetop MUP

PUBLIC nmovetull

..uvefull PROC FAR
push bp
nOv bp~sp
push 84
push a1
push di
push don

nov ax, O&Ol9h ;video ran base
now as, ax ;Set up sepeat pointer
nOv do, ax

ROv dx, 3ceh ;set write node 1

68

nov al, S ;index register 6
out dx, &I ;send the index
inc dx ;point to node register
nov al, I ;choose mode 1
out dx, al ;set the node
cIA ;clear direction flag (autojuc. nova)

nov bx. 0 ;bx points to row
nov dx * 61 ;unber of colan to move

aa no 1v bp, 80 nexrt row pointer

nov di. bx ;di a destination
nov mi, di
inc si msi a source
nov cx, dx ;cx = coumn counter
rep novsb mnove over 1 row
add bz, bp ;point to next row
CO bx, 20480 ;don* with all rows
use again ;no. go do next row

pop do
POP di
POP si

pop so

POP bp
rot

.. nvefull IIDP
-TEXT ENDS

;Vrite directly to the EGA video &AN. This routine assumes the video driver
;is IBM compatible and supports EGA node 101 C 403s0, 16 colors)

;Vrite a vertical linecursor to the screen
;putcurs (text columnn numiber)

extra *.curcolor :317K

-.TEXT SEGMENT' BYTE PUBLIC 'CODE'
-TEXT ENDS

-.DATA SEGNT VOID PUBLIC 'DATA'
-.DATA ENDS

COIST SEGMENT VOID PUBLIC 'COIST'
CONS? ENDS

JSS SEGMENT VOID PUBLIC '3SS'
_.BSS ENDS

DGIDUP GROUP CONST, _BSS, -DATA
ASSUME CS: JElT, DS:DGROUP, 55 :DGIDUP, IS: DaoIIp

-TEXT SEGMENT
PUBLIC ..putcuru

* jput curs PIOC FAR

push bp

69

now bp~sp,
push as
push ci
push di
push do

SOv ax, sog -curcolor ;pass segment to dc
ROT do, ax
SOT hi, offset ..curcolor ;ds: (bx3

Nov dx, 3ceh ;set video write made 2
noV al., 5
out dx, al
inc dx
nov al, 2 ;video mode 2
out dx, al
nov ax, 0&0i9h ;point to top left screen corner
30? 08, ax

;set up bit mask register
mow dx, 3ceh ;point to address register
nov al. a ;bit mask register
out dx, al ;address the register
inc dx ;point to data register
nov ax, 80h ;mask out all bits except bit 7
out dx, al ;send data to mask register

;IOR the cursor color so that the screen data can be redisplayed later
dec dx
nov al. 03h
out dx, al
inc dx
nov al, 018h
out dx, al-

put the color into tbe mask register
mov dx, din: Ebx

;get the coluon number where cursor is to be written
nov Cx, ["pI
nov bx, cx ;load with screen column number to write to

;draw a pixel
Coll: nov ci,es:(bx) ;finl the latch registers

NOv al, dl ;pixel color
nov es:CbxJ, al ;draw the pixel
add hi, 80 ;point to pixel below
COP bx, 20480 ;20480 for 256 ptc - cols bottom
ji coall

POP din
pop di
POP si
POP cc
POP bp
rot

..put curs EIIDP

-TEXT KIDS

70

END

,PUTLCURS.ASN

;Vrite a vertical linecuruor to the screen at specified "text" colum
;with the cursor appearing as a left-bracket

; argument -- pmtlcurs(text clm umber)

;Vrite directly to the EGA video RAM. This routine assumes the video driver
;is IBM compatible and supports EGA node 1038 6401360, 16 colors)

extrn ..curcolor :BYTE

-TEXT SEGMMNT BYTE PUBLIC 'CODE'
-.TEXT ENDS

-DATA SEGMENT VOID PUBLIC 'DATA'
-.DATA ENDS

CONST SEGMENT VOID PUBLIC ICOIST'
CONST ENDS

BRSS SEGMENT VOID PUBLIC 'BSS'
_.BSS ENDS

DGP.OUP GROUP COIST, ..BSS, -DATA
ASSURE CS:_TEXT, DS :DGROUP, 55 :DGROUP * ES: DG3L)UP

-.TEXT SEGIMT
PUBLIC ..putlcuxs

.putlcurs PROC FAR

push bp
now bp~sp
push so
push si
push di
push do

SOv ax, sag *.curcolor ;Pass segment to do
MOv do, ax

;get the colum umber where cursor is to be written
nov cx, (bp+6J
nOv dx, 3coh ;set video write mode 2
nlov al, 5
out di, al
inc dx
nOv al, 2 ;video Sode 2
out dx, al
nov ax, OaO19h ;point to top left screen corner
Nov as, ax

set up bit .mak register
nOv dx, 3ceh ;point to address register
nOv aI, a ;bit mask register
out dx, aI ;address the register
inc dx ;point to data register
mow ax, 258 ;1111 1111 - mask mots cursor width
out dx, al ;send data to mask register

71

* 101 the cursor color so that the screen 4 iita can be redisplayed later
dec: dz
NOw al , Oft
out dx, al
inc 4z
Bev al. 018h
out dx, al

*put the color into the mask register
now bx, offset -curcolor
mov 4x, ds:fbzJ

;load screen column sumber
mov bi, cz

*draw the first pixel row in the column
mow al,es:EbxJ ;f ill the latch registers
nov al, dl ;pixel color
now s:Ebx], al ;draw the pixel

*now redefine the mask, and draw the rest of the Coum
;set up bit mak register

mow dx * 3ceh ;point to address register
nov al. 8 ;bit mask register
out dx, al ;address the register
Inc dx ;point to data register
mow ox, 128 ;1000 0000 - mask sets cursor width
out dx, al ;send data to mak register

,IOft the cursor color so that the screen data can be redisplayed later
dec dx
now al, 03h
out dx, al
inc dx
mow al, 018h
out dx, al

*put the color into the sask register
mov bx, offset ..curcolor
mow di, dm:(bxJ

;load screen column number
Nov bx, cx

;draw a pixel

Coll: mow ml,es:[bx] ;f ill the latch registers
mov al, dl ;pixel color
now es:[bxJ, al ;draw the pixel
add bi, 80 ;point to pixel below
CU bx, 20400 ;coluin bottom
ji Coll

finally, redefine .mak ad draw the last pixel row

Nov dx, 3ceh ;point to address register
mow al, a ;bit .mask register
out dx, al a-ddssn the register
inc dx ;point to data register
mow ax, 255 ;1111 1111 - mask sets cursor width
out dx, al ;send data to mask register

72

;ZOI the cursor color so that the screen data can be redisplayed later
dec dx
Mov al. 03h
out dz, al
inc dx
mov al, 016k
out dx, aL

; put the color into the mask register
ov bz, offset _.curcolor
NOT da, ds:[bz]

;load screen colm number
ROT bx, cx
add bz, 20400

d draw the last pixel row in the col u- n
Mov al,o: [bz ;fill the latch registers
mv .l, 41 ;pixel color
mov es:[bz], al ;draw the pixel

pop is

pop di
pop si
pop as
pop bp
rot

.putlcurs DP

-TEXT ENDS

EID

;PUTNAG. AS

;grite directly to the EGA video RAN. This routine assumes the video driver
;is IBM compatible and supports EGA mode 101 640x360, 16 colors)

.TEXT S1Erl BYTE PUBLIC 'CODE'
-TXT ENDS

.DATA SEGML WORD PUBLZC 'DATA'
value equ 80h
-DATA ENDS

CONST SEMIET WORD PUBLIC 'COIST'
COUST KIDS

.BSS SEON31T gORD PUBLIC 'BS3

.SS KIDS

DOROUP GROUP CONST, .US, .,ATA
ASSOUI CS:.TEIT, DS:DGROUP, SS:DGDOUP, 1S:DORnUP

.TEXT SORST

PUBLIC .putmag

73

-putmag PAWC FAR

push bp
n.Y bp,sp
push as

push dipuh da

moN di, [bpO] ;pass offset of data buffer
moW ax, [bp4] ;pass segment to do
nO do, a

nv aS, 80h ;mask register

nO dx, 3ceh ;set video write mode 2
mov a1, 6
out dx, al
inc di
no al, 2 ;video mode 2
out dx. al
now ax, OaOl9h ;point to top left screen corner
n es, S

;set up bit mask register
setup: now dx, 3ceh ;point to address register

no al, 8 ;bit mask register
out dx, al ;address the register
inc dx ;point to data register
nov cx, [bp+lOJ ;load column maber from call variable
no ax, 80h ;load value to be shifted
shr ax, cl ;compute bit mask for proper col m n
out dx, l ;send bit mask to mask register

;get the bar height to be plotted

;plotting a symetric envelope - sym8etry about a centerline
;plot black bar, followed by a color bar with width symetric about the
;middle, finished off with another black bar

nov ax, 64 ;load max height
sub am, ds:[dil] ;subtract bar height
mow dx, 80
mul dx ;get row number to start
add ax, 10240 ;locate below spectral window
add ax, 60 ;go to colum 60
now cx, ax ;cr holds the address for top boundary

now ax, 64 ;do again for bottom boundary
add ax, ds:[di] ;add bar height
now dx, 80
ml dx ;get row number to start
add ax, 10240 ;locate below spectral window
add ax, 80 ;go to colm 60
NOY dx, ax ;dx holds the address for bottom boundary

Mow bx, 80+10240 ;addres to start os(60 cols,2e128 rows)
coll: now al, es:[bx] ;fil the latch registers

nor byte ptr e:[Lb, 00 ;draw the pixel
add bx, 80 ;point to pixel below
COP bi, cz ;are we at the threshold
jil coll

col2: now al, es:[bx] ;load color 4 for lower part
mow byte ptr es:[bx], 04

74

add bx, 80
CP bx. dz ;done with Calimn?

J1 col.2

col3: MOT &I, em: [bzJ ;land color 4 for lower part
mow byte ptr es:[bzJ. 00
add bm, S0

CP bz. 20480 ;done with colimn?
ji col3

finish:
POP da
pop di

POP mm
pop bp
ret

-patimg aND

-.TEXT ENDS

,PUTICUR.S.ASK

WVrite a vertical linecursor to the screen at specified "text" column
with the cursor appearing as a right-bracket

.argument -- putrcurn(toxt colum amber)

; Write directly to the EGA video RAN. This routine assumes the video driver
;is IBM compatible and supports EGA node 101 (640z350, 16 colors)

extra ..carcolor :5TE

-TEXT SNENT BYTE PUBLIC 'CODE,
-.TEXT ENDS

-DATA SEGNUT WOID PUBLIC $DATA)
-DATA ENDS

CONST 3ENIT VOID PUBLIC 'CONST'
CONST ENDS

..BSS SEUEIT VOID PUBLIC '355'

.385 ENDS

MACLUP GROUP CONST, ..3SS, -.DATA
ASSNEE CS:_.TEZT, Dl :DGROUP. S :DGIOUP, U: DIROUP

-TEXT SUWEUT
PUBLIC -putrcurs

..putrcure PAOC FAR

pus bp
Mow bp,sp
push as
push mi
Pumh di

75

push ds

noV ax, seg ..curcolor ;pass 9*pment to da
NOV ds, ax

;Set the colum aumber where cursor is to be written
Nov cx. ["I4
Sov di,, 3coh ;set video write mods 2
Nov 4l, 5
out dI al
inc dx
nov a. 2 ;video mode 2
out dx, al
m.Y am, 0a019h ;point to top left screen corner
NOV *a, ax

;set up bit mask register
n.Y di, 3coh ;point to address register
NOV al, a ;bit ask register
out di, al ;address the register
inc 4z ;point to data register
Nov ax, 255 ;1111 1111 - mask sets cursor width
out dZI al se*ad data to mask register

;I01 the cursor color so that the screen data can be redisplayed later
de dz
NOV al, 03h
out di, ml
inc di
NOV al, 018h
out di. al

*put the color into the mask register
Nov bx, offset -curcolor
Nov dx, ds4: bx)

;load screen column number
* need one coum to the left for bracket to point left

de cx
NOV bi, cz

*draw the first pixel row in the colma
mOV al,ea:(bx] ;fill the latch registers
NOV al, dl ;pixel color
nov es:(bxJ, al ;draw the pixel

now redefine the mask, ad draw the rest of the column

set up bit mask register
mov di, 3ceh ;point to address register
Nov al, a ;bit mask register
out di, ml ;address the register
inc di ;point to data register
NOV 31, 128 ;1000 0000 - mask sets cursor width
out di, ml ; send data to mask register

101 the cursor color so that the screen data can be redisplayed later
dec dz
NOV al, 03h
out dx, al
inc di
NOV al, 018h
out di, al

76

*put the color lnto the msk register
MOT hi, offset .curcolor
SOT dx, da: (hi]

;load screen column number
inc cz ;to return to valid colmn anmber
nov bx, cz

;draw a pixel

Coil: mow al,os: [hi] ;f ill the latch registers
MOT al, dl ;pixel color
N.Y eo:EbzJ, al ;draw the pixel
add hi, 80 ;point to pixel below

Ca ib, 20400 ;20480 for 258 pts (column bottam)
jl col

*finally, redefine mask and draw the last pixel row

MOT di * 3coh ;point to address register
MOT al, 8 ;bit mask register
out di, sI ;address the register
inc dX ;point to data register
N.Y 51, 255 ;1111 1111 - mask sets cursor width
out dx, &I menmd data to mask register

;X01 the cursor color so that the screen data cank be redisplayed later
dec dr
now al. 03h
out di, al
inc di
mow al, 018h
out di, al

put the color into the mask register
ROT hr. offset -curcolor
SOv di, da: (hi]

;load screen columin number
* need one column to the left for bracket to point left

dec cz
MOT hi, cx
add hi, 20400

draw the last pixel row in the colum
Nov al,es:Ebz] ;finl the latch registers
MOT al, dl ;pixel color
MOT es:[bx], al ;draw the pixel

POP do
POP di

POP bp
rot

.patrcurs SlOP

77

LEIEV .C
review .c -- displays a file of binary data which baa been
saved during previous runs of Voice. Input file say be any size;
it is read in chunks of 512 bytes.

August 1989 version allows the display of one channel of data, invoked
by including -r and the filname on the commend line.

Sinclude <atdio.h>
$include <graph.h>

$include 11keydefa .h"

$include "lfcutl.h'
*include "husa.def"
Sdefine O..IAV OJBINARY
Sdef in. enable-pi wstcr((rstcr)&STC-.31J) I SC.DPAGE1)
*def ine disablee*dm ustcr(rstcrOSTC-NEK-RASI)
*define enable.pO watcr((rstcrO&STC-.IIJ) ISTC..DPAGEO)

unsigned int acrntopO;
unsigned int acrabot 0
unsigned int totmislO;
unsigned int totas2O;
unsigned int movetopO;
unsigned int uoveful 10;
unsigned int (emov)O,(etWsft)O;

review (dimp)
int diap; /*'option' in .aino/

asteru FILE estrem;
ertern char fidinOl, caloriE) * color2O];
astern unsigned int adataptr. Otmsptr;
estern unsigned int doff inc; /0 default =138*6 a/
extern long unsigned mnt toaddr;
estern int inkey, gain, cycle, fftvalD. Olpi. Slp2, Oltnp, lcol, rcol;
estern int ptkut, ff tout, kay;
FILE *fp.
int i~j,k,zu,Ioopknt;
unsigned int revdata [256] ,revknt;
unsigned int rawial;
long int strt, place;
revknt a cycle m 0;
gain a 0;

/*open the data input file*/
if C(fp a fopen(fidin."rb"l)) - N=L)

..clearacreen(GCLEARSCIEI);

..displaycursor(-JCURSORDE);
m.etvidoaode(DEFAULTHODE);

setscrO;
printfC"Could not open input filo\n"l;

esit(0);

/*read data input file in 512-byte chunks; process and output each chunk*/
iW kay)

78

place a 512;
fseek(fp ,place ,SBBI.SBT);

strt - ftell(fp);

/e Top of user-control and read-execute loop*/
while (1)

if(kbhit() H
inkey w getkeyO;
switch (lzkey){

came I.F:
shile(!kb]hitO);
break;

case 1.1:
leursorO;
savscr(1);
Iemove fp forward the required numer of bytes*/
Wf lcol > 1)

1seek(fp. (buYg) (lcol-1)*6) * 272) .SEUCUI);
fsrite(fp,sizeof(int),((rcol-lcol.1) e4 C136),streaa);
break;

case I:
fclose(fp);
.cl*Arscreen(_GC.Eh5CIIE9U);
..displaycursor(_GCRSORI);
setacrO;
-stvdeonoe(D?ULTNODE);
exit (0)

came I-.UP:
++gain;
break;

case I-DOVE:
if (gain > 0) -- gain;
break;

for(aO ; a < 256 ; n++)
if(kay)

ravval. - getu(fp);
revdata~n] = ravval t< 4;

also

rewdata~nJ a get.(fp);

rewhnt4; /*tally of 512-byte chunkse/

tf(feoffp))
while(!kbkit())

strt-u(losg)dofflinc;
fseek(fp ,strt .SIK.SZT);

/einplment the rn-display loops/
datapt? - rewdata;

strt32O(30);
tmaptr - (uaigned e)((1p2E0]c<i) I tweaddr);
enable-pO;

tustt(dataptr,tusptr,ptkat, gain);/* default ptkhit a128.1

for Q-0O; J<128; is'.)
colorl[127-J] a (char)fftval~j];

79

scratop(covlori * cycle);

if (cycle -8){
cycle m 0;
novtopO);

itap = p2;
1p2 1 pi;
ipi * tup;
while((inp(IOBASE) & OxOS) - 0);
hlt3200;

}/*and of user-control loop*/

/*SAVSCl C
savscr .c -- stores a section of data from the memiory buffer that

previously has been displayed on the screen.
Data are either written to an output file which contains
a header (ailosing input to the lay Sona-3raph
Vorkstation), or are appended to a user-specified
the file (non-lay mode).

note: code is present for the saving of color-coded data, but it is
not enabled.

#include <stdio.h>
include <stdlib.h>
Unclude <string.h>
#iuclud* (graph.h>
Unclude <sys\type .h)
$include <sys\stat .h>

U nclude Ihsaos def"

*include lfcntl .h'
#define 0- PAY 0-81BARY
$define eaable..pl watcr((rstcrOSTCN2J) ISTC.DPAGRI)
*def ine disabl*efet ustcr(rstcrOkSTC.NU..RASK)
#def ine eaable.pO wstcr((rotcrl&STC-.3UN) I STC..DPAGEO)

unsigned int totslO);

char wemples (8];
char oposAode (3];
char kays"*[] , * b-
char otcmod*ED = m "

savscr~pstrt ,offstrt ,offend~pageknt step)
unsigned it petrt * offstrt, offend,* step;
it pagekat;

exqr int fftvs3L[, elpi, O1p2, eltup, lcol, rcol, kay;
extern char fidid(] * nowfid(J * colon 0];

80

extern unsigned it Otmsptr,
extern. long unsigned int tsmaddr;
extern FILE *stream;

struct *tat baf;
unsigned long it pageaddr * binkat * stand;
long mnt Place;
unsigned int rasral;
unsigned it enewptr. outvul, ofast, oldof;
it result, dtyp, txtcolor, savgain. i, J;

savgaiu - 0;
dtyp - 0;
result a -1;
biuknt a 0; /efor accruing number of words sent to saved lay filed/

/enot*: To implent filesaves of color-coded data or of reviewed data, dtyp
must 'be added to the argument list. Then dtyp would equal 0 for dua
ixnpuZ, 1 for file input, 2 to output color codes*/

/*get a filename from the user*/
messages(S);

restart:
get.(nowfid);

/*do we have a new filename , or just a <C&>'e
if(strlen(newfid) > 0)

/*see if this file already existe*/

if(stat(newfid,abuf) - 0)

/*this file exists already -- set up for an append, or request
a now filename if this is to be a lay header filee/

for(J-0 ; j<15 ;J++)
newfid~j]='

if(kay)

messages (10)
goto restart;

else

if(messages(6) 1)

messages(s);
goto restart;

else

/*user hit <MX -- no save is made*/

meeeages(11);
reurn(0);

/*Open the new data filed/
if(dtyp < 2)

81

/*binary write or append of raw data*/

if(kay)
strcpy(opimode,kaymode); /*lay header fie*/

else
strcpy(opauode,etcmods); /*non-Iay; can be appendede/

if(stream = fopen(newfid,opumode)) - NULL){
_.c..axscren(GCLE&RSCIEEIf),
..displaycror(AURSCRON),
aetuctO;

.setvidomode (.DEFAULThODE);
printf("Cannot open a new file. Your hard disk may be fnl.\n");
clearerr(stream);
exit (0);

else
/e append of colorcoded data*/

if((streas a fopen(nowfid."a")) - ULL){
-clearacreen(GCLEARSC3EEN);
..displaycarsorLGAJftSORDI);
aetscrO;
-setvdemode (-DEFAULTRODE);
printf("Cuannt open a new file. Your hard disk may be full. \n");
clearer (at ream);
exit (0)
I

/eredefixte fidjde/
strcpy(fidid ,newfid);

messages (7)

/*write data to either old or new file*/
/*save dma data*/

if(dtyp -= 0)

if(kay)

kayhdro;
I

ofset - offstrt;
oldof - 0;
pageaddr a ((long)pstrt)<<28;

/*loop once for each page, stopping on last page when offend is
reached*/

for(j-0 ; j <= pagekzat ;j++)

/0 do once at start of page to act ofset > 0 e
newptr a (unsigned *)Cofset I psgeaddr);
rawwral - onewptr;
if(kay)

raerval - raw Tal >> 4;

if(putw(rawval,stream) - EOF){
if(ferror(stream)){

/*cannot write to file - the disk way be fall*/
..clearscreen(GEASCRBKN);
..displaycrsorGOURSORLJI);
stscrO;
-setvidonode (..EPAULTIIOE);

printf ("Cannot write to file. Your hard disk ua7 be full .\n");

82

clearorr(strast);
*xit(O);

oldof = ofaet;
ofast 4- 2;
O+biakat;

while(*:fast > oldof)

sewptr w (unsigned 0)(ofeet Ipageaddr);
rawwal - nupr
if(key)

rauval. a rawval >> 4;

if(put.(rawval.strea.) - SOF)
if(fsrror(streau)){

/ocannot write to file - the disk may be fufle0/
.. clearscren(GCLEkRSCIEEN);
..displaycursor(.GCiISOULN);
aetacrO;
..uetvidecmod(DFALTUODE);
printf(Cannot write to file. Your hard disk may be fl.\i)
cloarerr (stream);
exit(0);

oldof afooat;
aoot 4.2;
if(Qj paekit) A& ((ofset~step) >- oftend))

/*if(hay).plug in blinkat avaber of samples urittene/
Wf kay)

reuind(stream);
place = 26;
stand - 10000;
whil*C binkut (C stand)

++place;
stand /a 10;

fseek(stream, place, SKU..SET)
ultoaC biukut, samples, 10);
fputsC samples, stream);

messages(S);
fcloe(tream);
return(O);

4.binkunt;

oldof U 0;
44pstrt;
if(petrt > 9) petrt a 4;
pageaddr a ((long)pstrt)<<28;

/****from here on down is diabled by dtyp being hardaired to 0 ee*e/
/e if this is to be enabled, the code must be revised e

else if (dtyp - 1)
/*save data input from a file*/

83

return; /e... to function review', to save saved datae/

else if (dtyp - 2)
/esave the colorcodes of expanded fftvalueSO/
{
outval a (long int)neuptr;
ofst W outval A OzFFFF;
for(i = 0 ; t < 480 ; 1++)

{
writpa(30. ipl, 12);
strt320(30);
/un..ptr - (insiksd e)(ofset i absaddr);e/
tmptr a (unsigned)(1p2[O<<1) I t-saddr);
enable.pO;
totusl(newptr, tmsptr, 256, savegain);
ofset += 136;
for(j a 0 ; j < 128 ; j4-+)

{
colorlEj] a (char)fftval[j];

putc(colorl[j] ,stream);
}

for(j w 0 ; j < 512 ; j++); /*uait loop*/

readda(lp2[1], fftva1, 266);

itup * 1p2;
1p2 - ip1;
ipi =ltp;

while((mp(OBASE) * OxOS) 0- 0);
hlt3200;

)
I

;SCDEES. ASN

D Draws the sonogram image to screen.

;rite directly to the EGA video RAN. This routine assumes the video driver
;is IBM compatible and supports BOA mode 10 (640z350, 16 colors)

; note: 9/89 - Routines setscr, scrntop and scrnbot are functional. Other
code exists as hooks for future expansion.

.TEXT SEGNENT BYTE PUBLIC 'CODE'

.TEXT ENDS

.DATA SEGNENT VORD PUBLIC 'DATA'

.DATA EiDS

COIST SIGMETr WORD PUBLIC 'COIST'
COIST KIDS

_JSS SEONr? VORD PUBLIC IBSS'

.BSS EIDS

DOROUP GROUP CONST, .BSS, -DATA

ASSUME CS: .TEIT. DS : DGRDUP, SS: DGRDUP, ES: DGROUP

.TEXT SEGENT
;setscr resets palette values to default colors

84

PUBLIC _setscr

_setacr PROC FAR

push bp
nov bpsp
push sa
push si
push di

o ah, 0
nOv I, OOh ;set video mode l0h
ist 1Oh

POP dipop di

pop as
pop bp
ret

.setscr IKNDP

PUBLIC .scrntop

_scr top PROC FAR

push bp
nov bpsp
push os
push si
push di
push ds

nov di, (bpq6 ;pass offset of data buffer
nov ax, bp8] ;pass sepent to ds
Mov ds, ax

Mov dx, 3coh ;set video write mode 2
nov al, 5
out dx, al
inc dx
nov al, 2 ;video mode 2
out dz, al
ov ax, OaOl9h ;point to top left screen corner

nov ee, ax

;set up bit mask register
nov dx, 3coh ;point to address register
nov al. a ;bit mask register
out dz, al ;address the register
inc dx ;point to data register
nov cz, LbpW 10]
nov az, 80h
shr uxc
out dz, al ;send data to mask register

;draw a piel
oV bz, s0 ;load with screen coim number to write to

Col: nov eLos:[bz] ;fill the latch registers
Mov al, ds:[di] ;pizol color from input array
nos os:[bx], al ;draw the pizel
inc di ;poixt to next input array element
am bz, 80 ;point to pizel below
Cap bz, 10240 ;10240 OR 20480 for 256 pts (colum bottom)

85

ji coll

finish:

pop do

pop di

POP al

POP bp
ret

_scrntop U1DP

PUBLIC .scrnbot

.scrubot PROC PAR

push bp

nov bpsp
push s

push a1
push di
push do

nov di, [bp4"] ;pass offset of data buffer
nov ax, [bp+8J ;pass snoent to do
nov do, a

Nov dx, 3ceh ;set video write node 2
nov sl, 5

out dx, al
inc dx
nov al, 2 ;video mode 2
out dx, a1
nov ax, OaO19h ;point to top left screen corner
nov es, ar

;set up bit mask register
nov -dx, 3ceh ;point to address register
now all a ;bit mask register
out dx, al ;address the register
inc dx ;point to data register

nov cx, [bp+lO]
mov ax, SOh

shr x, c1

out dx, a1 ;send data to ask register

;draw a pixel
nsow bx, 60+10240 ;load with scroes colu ammber to write to

cola: ov al,es: [bx1] ;fi l l
the latch registers

mov al, ds: [diJ ;pixel color from input array
nov es:[bx], al ;draw the pixel
inc di ;point to next input array element
add bz, 80 ;point to pixel below
Cup bx, 20480 ;10240 OR 20480 for 256 pts
Ji cola

bye:
pop ds
pop di

pop si
pop s

pop bp
rot

86

..crabot =DP

PUBLIC _scral

.scral PROC FAl

Push bp
now bp-sp

push on
push ci
push di
push do

MOT di, [bp] ;pass offset of data buffer
no ax, b"8] ;pass segent to d&
N.Y de, ax

mow dx, 3ceh ;set video write mode 2
Nov &1, 6
out dz, aI

inc dz
OT a., 2 ;video mode 2

out dx, el
nov ax, OaO19h ;point to top left screen corner
now we, ax

;set up bit mask register
W.y dx, 3ceh ;point to address register
NoY al, 8 ;bit mask register
out dx, al ;address the register
inc di ;poist to data register
mov cz, (bp+l0]
now ax, 80h

shr ax, cl
out dx, al ;send data to mask register

;draw a pixel
Nov bx, 60 ;load with screen colmi nmber to write to

colb: Nov ul,es:[bz] ;fill the latch registers
Nov al, ds:[di] ;pixel color from input array
Nov es: [bx, al ;draw the pixel
inc: di ;point to next input array element
add bi, 80 ;point to pixel below
cqp b, 5120 ;10240 01 20480 for 266 pts
jl colb

end1:

pop di
pop Gi
pop so

pop bp
ret

.scrnl ap

PULIC _scrz2

-scra2 PUOC FAR

push bp
No? bp~sp
push e
push ai

87

pus di

mo0w di. Eb"36 pas offset of data buffeor
mow ex. Ebp+eJ ;Pass aegmeat to do
myO do, ax

Imow dx. 3cek ;set vide. write mode 2

out dz. al
inc dx
a" al, 2 ;video imode 2
eat 4x. al
myV ex, 0@019k ;point to top left acress comner
MDT e, &x

;set up bit .mak register
NOV dz. Scab ;Point to address register
mov al, a ;bit .mak register
out ds, al ;addreso the register
inc 4x ;Point to data register
ImO cx, (bp4 10]
ImO ex, 80k
Shr mx, cl
out 4x, al meud data to mask register

;draw a pixel
Mow bx, 6045120 ;lomd with screen coume member to write to

coic: Imow amL,*: [E] ;fill the latch registers
mow al, do: [di] ;pixel color from input array
mow e: (bz3], al ;draw the pixel
Inc di ;Point to mnx input array element
add bx, So ;point to pixel below
CE bx, 10240 ;10240 01 20480 for 256 pts
jl colc

oud2:

POP di

pop as
pop bp
rot

uscr%2 UDP

PUBLIC -scuS3

-.acn3 PANC FAR

pus bp
a" b,.sp
push as
puh a
Pa &I
peah do

Imy di, [bpoS] ;pass offset of data buffer
Imy or, ("Ie ;pas sepewat to do
MOV as,mxz

MOT dx, 3ceb ;set wideo write mode 2

out dx. al

88

imc dx
mow al, 2 ;video mode 2
out dz, al
mow ar, OaO19h ;point to top left screen corner
NOT on, &x

;set up bit mask register
mov dx, 3c0h ;point to address register
mow al, 8 ;bit mask register
out dx, al ;address the register
inc dz ;point to data register
NoT cx, [bp410]
moT ax, 80h
ohr ax, cl
out dx, al ;send data to mask register

;draw a pixel
mow b, 60+10240 ;load with screen colm number to write to

cold: nov al,es:[bx] ;fill the latch registers
mow al, ds:[di] ;pixel color from input array
nov es:[bz], al ;draw the pixel
inc di ;point to next input array element
add bz, 80 ;point to pixel below
cap bz, 15360 ;10240 01 20480 for 256 pts
ji cold

end3:
pop do
pop di
pop si
pop s
Pop bp
rot

.scrn3 IIDP

PUBLIC scrn4

.scrn4 PROC FAR

push bp
noT bpsp
push as
push si
push di
push ds

now di, [bp"46 ;pas offset of data buffet
nov ax, [b"I ;pass sepmt to do
nov d, ax

nov dm, 3ceh ;set video write mode 2
ow Al, 5

out dx. al
inc d

Nov al, 2 ;video mode 2
out d, al
mov o, OaO19h ;point to top left screen corner
mow es, &U

;set up bit mask register
mow dx, 3coh ;point to address register
mow al. a ;bit mask register
out dz. al ;address the register

89

inc dz ;point to data register
MDT cz, Ebp4 10]
mow ax, sob
shz ax. ci
out dx. al ;*end data to mask register

;draw a pixel
MOT bx, 604+15360 ;load with screes colum mnber to write to

Cole: nov al~es:[bxJ ;fill the latch registers
mOT al, din: di] ;pixel color from input array
Imow es:[bxj. *I ;dram the pixel
inc di ;point to next input array element
add bx, 80 ;point to pixel below
Cu bx, 20480 ;10240 OR 20460 for 256 pta

Jl Colo

and4:
pop do
POP di

pop s
POP bp
ret

_scrz4 UDP

-TET BIDS

/CSIO1JDAT .C
ahowdat.c -- Effects retrieval of data previously stored in multiple
pages of memory by the DNA, recomputes the FF~m, and displays
one line each tim it is called.

Unclude <atdio.h>
S include 'hsms del

*define 0..IAV O-515AIT
$define enable-pt watcr(CrstcrO&STC-UIJ) I STC-.DPACEI)
$define disable-edn wetcr(rstcrOSTC.NULNASK)
*define enable-p0 wstcr((rstcr)&STC-UJI) I STC..DPAGEO)

unsigned int acratopO);
ursigned int scrnbot 0;
uns igmed ant totma10;
unsigned Ant touma20;
unsigned Ant (emove) C;
unsigned Int (otimeht) 0;

showdat~disp ,toch,dacem)
int disp; /*display option set in cdopt: I a 4-channel, 2 2-channel,

>2 ai-channele/
Ant tock; /e*st to I or 0 in getme for one-second times ticks*/
ist decom; /*et to I or 0 in getmum for tenth-of-a-scond ticks*/

extera ist cycle, ptkut, fftout, Iftwalf], elpI, elp2, eltmp;

90

extern it icol, rcol;
extern iwt gain;
ertern char colorlO], color2O];
eltera unsigmed int oda t aptr. otmptr, doffeet, envelope;
extern, long unsigned ist tinaddr * showsadr;

it i,j,k.a, esgaim;
static it taskat;
exgain, a galn;
envelope a 0;

Pritpm(30, i, 12);
atrt320(30);
dataptr u~usagned W)doffset I sbousddr);
tusptr a (unsigned e)((1p2[0J<<l) I twisaddr);
enable-pO;
tmstmt (dataptr .tmptr .ptknt, ezgai);

/*filnd the signal asplitudee/
for(iuO ; i~ptknt ; 1.4)

if(envelope < dataptr~iJ) envelop.e dataptr[iJ;
envelope a(envelope - Ox7fff) >> 8;

if(diup -2)

f
k a 0;
for(j u0 ; j < 128 ; J++)

colon (127-j] a (char)fftval 1k44];
color2C127-J] = (char)fftval~k44];

/snake the timie tickhs*/
if(tock)

/Onke a longer line every ten, seconded/
44tenknt;
if(!Ctonknt%10))

tenhat *0;
for(j *120 ;j < 128 ;J++4)

colorl(127-jJ w 63;

else
for(j 0 124 ;j < 128 j+14)

colorl[127-j] a 63;

if(doe)

for(j - 126 ; j < 128 ;J++)
colorl(127-j] a 63;

colorl(12?] - 63; /*horizontal line across display area*/

scrntop(colorl ,cycle);
scrnbot(color2 .cycle);
cycle"4;

elseo if (diep > 2)

91

for (juO; J<128; J++.)
colorl(127-J] - (char)fftval[j);

/emske the tine ticks*/
if(tock)

/emake a longer ine every ton secondse/
++tenknt;

teahut *0;

for(j *120 ;j < 128 ;J++)
colorl[127-jJ a 63;

else
for(j a 124 ; j < 128 ;J++4)

colorl(127-jJ a 63;

if(decem)

for(j a 126 ; j < 128 ;J++)
colorIE127-J] - 03;

colorl(127] a 63; /egorjzoatal line across display areael

scrntop(colorl, cycle);
putmag(heavelope ,cycle);
cycle++;

if (cycle >- 8){
cycle W 0;
movefullO0; /* a wide waveform for all memory displays*/

readdm(lp2EIJ. fftval, fftout);
ltmp slp2;
lp2 = pi;
iPI ltup;
while((inp(IOBILSE) & OxOS) -* 0);
h1t0200);

return;

;TT= ASN
;totms am -- moves a buffer from the DR& buffer to TNS data memory,
*formats and scales the data buffer on the fly.
*Call with:
*address of input buffer
*address of UNS buffer
numer of words to transfer

*scaling coefficient (gain)

*source Sment - s
*source offset -si

destination offset - di

Negative gain is allowed.

..TElT SEUK 31M PUBLIC 'CODE'

92

-.TEXT KIDS

-.DATA SEGMNT VOID PUBLIC 'DATA'
-DATA KIDS

COIST SEUKIXT VOID PUBLIC PCONST)
COIST ENDS

..ISS SIGUKI VOID PUBLIC '355'
-133S KIDS

DGROUP GROUP C0151,.88 _BS -DATA
ASSU1E CS:-.TEIT, DI :DGROUP, SS :DGRDUP, RS: DOBOUP

-TEXT SEGMNT

;This version of tot=n is for displaying and saving a single channel.

PUBLIC -totsl

..totinl MDOC FAR

push bp
nov bp,sp
push as
push si
push di
push ds
push es

;called with (*source, edest, unzords, gain)

Nov si. Lbp+Gl ;pass source offset
nov ax, Ebp4.] ;pan& source segment
MOT as, ax ;to as

nOv di, [bp+1O] ;pass destination offset
nOv ax, (bp4 12] ;pass destination segment
nOv da, ax ;to da

nlov dx, [bp4 1 ;got mimber of words to move
nOv cz, [bp+16] ;get gain

Nov bx, OTt ffh

begin: cup czO ;see if gain is < 0
ji less

loopI: nov ax, es:[siJ ;Set source word
sub a7, *z ;unipolar -> bipolar
Ski ax, ci ;adjust the gain
nov [di], ax ;put it to destination (real buffer)
add di. 2 Jincromeat destination address
SOv ax, es:[si]
sub ax, bz
shi axci
SO no [di], ax
add di. 2 ;GET RUADY 7OR UNIT LOOP-
add si, 2

*dec dx
mxz loopi
jup bye

93

learn: neg cx ;change sign from neg to porn

loopO: NOT &x, es:(aiJ ;get source word
sub am, bi ;unipolar -> bipolar
mar ax, ci ;adjust the gain
nov Edi], ax ;put it to destination (real buffer)
add di. 2 ;increment destination address
NOT ax, *s:Esi]
sub *%z, bx
war ax. ci
nov [di]. ar
add di. 2 ;GET READY FOR NEXT LOOP-
add ri, 2

dec dx
jax loopo
jmP bye

bye: POP ern
POP do
POP di
POP si

POP bp
rot

.Aotmal MUP

;Thisn version is used for displaying 2 channels
PUBLIC -totms2

..totus2 PROC FAR

push bp
mow bp,sp
push s
push si
push di
push do
push as

;called with (*source, edest, nummords, gain)

nov si. Ebp4.6) ;passr source offsret
nov ax, Ebp+8J ;pass source segment
NOv we, ax ;to s

now di, [bp+1OJ ;pass destination offset
nov ax, [bp+12 ;pass destination segment
NOv do, ax ;to do

nov dx. Ebp14J ;get mmber of words to nova
nov cz, [bp+iO] ;get gain

nov bz, O7fffb

strt: CUP c.O ;see if gain is < 0
ji minus

loop2:
nOv ax, es:(niJ ;get source word

94

sub ax, bz ;uuipolar -> bipolar
hi ax, cl ;adjust the gain
mov (di], ax ;put it to destination (real buffer)
add si, 2
add di, 2
mov ax, ex: [oil
sub ax, hi
shal ax, ci
mow Idi), ax
add di, 2
add si,2

dec dx

Jos loop2
jop finish

minus: neg cz ;a negative gain is allowed
loop2a: mov ax, es:[siJ ;get source word

sub ax, bx ;unipolar -> bipolar
ear ax, cl ;adjust the gain
mov (di], ax ;put it to destination (real buffer)
add di, 2
add si, 2 ;incrment location in *epent source
mov a, e s:esil
sub ax, bx
sa e x. ci
mow [di), ax
add di, 2
add si, 2 ;increment location in segment source

dec dz
jnz loop2a

finish: pop s
pop do
pop di
Pop si
pop as

pop bp
rot

.totr2 ENDP

-TEXT ENDS

END

,TITPREP.551

;Restores bit map area and bit address register to allow display of
;NBC Graphics text on screen.

;rite directly to the EGA video IN. This routine assme the video driver
;is rBN compatible and supports ISA mode 101 (64z360, 16 colors)

.TEXT SNUT BYTE PUBLIC 'CODE'
M.TT EDS

.DATA SEGMENT VORD PUBLIC 'DATA'

95

-DATA EDS

COEST SEGHEN WORD PUBLIC 'CORST'
CONST ENDS 4

.JSS SEGUT VORD PUBLIC '555'
385S ENDS

DORDUP GROUP COIST, * BSS, -DATA
ASSINE CS:_.TEIT, DI :DGROUP, ISS:DGRDUP, S: DGROUP

-TEXT SEGMNTr

PUBLIC ..tztprop,

_txtprep PROC FAR

push bp
mow bp,sp
push as
push si
push di,

mow dx, 3ceh ;set write mode 1
nMov al, 6 ;index register 5
out dx. al ;send the index
imc dx ;point to mode register
mow sl, 0 ;choos* mod* 0
out dx, al sget the mode

Nov dx, 3ceh ;point to address register
now al. 8 ;bit ssk register
out dl, al ;address the register
inc di ;point to data register
ROv al, Offh
out dx, al ;send data to mask register

POP di
POP si

POP bp
rot

_tztprop ElDP

-.TEXT ENDS

END

96

DOCUMENT LIBRARY

January 17. 1990

Distribution List for Technical Report Exchange

Attn: Stella Sanchez-Wade Pell Marine Science Library
Documents Section University of Rhode Island
Scripps Institution of Oceanography Narragansett Bay Campus
Library, Mail Code C-075C Narragansett, RI 02882
La Jolla, CA 92093 Working Collection
Hancock Library of Biology & Texas A&M University

Oceanography Dept. of Oceanography
Alan Hancock Laboratory College Station, TX 77843
University of Southern California Library
University Park Virginia Institute of Marine Science
Los Angeles, CA 90089-0371 Gloucester Point, VA 23062

Gifts & Exchanges Fisheries-Oceanography Library
Library 151 Oceanography Teaching Bldg.
Bedford Institute of Oceanography University of Washington
P.O. Box 1006 Uety, Was ig9 o

Dartmouth, NS, B2Y 4A2, CANADA Seattle, WA 98195
Office of the International Library

Ice Patrol R.S.M.A.S.

c/o Coast Guard R & D Center University of Miami
4600 Rickenbacker CausewayAvery Point Miami, FL 33149

Groton, CT 06340
Miami Library Center Maury Oceanographic Library

NOAA/EDIS auseay Naval Oceanographic Office
4301 Rickenbacker Causeway Stennis Space Center
Miami, FL 33149 NSTL, MS 39522-5001

Library Marine Sciences Collection
Skidaway Institute of Oceanography Mayaguez Campus Library
P.O. Box 13687 University of Puerto Rico
Savannah, GA 31416 Mayagues, Puerto Rico 00708

Institute of Geophysics Library
University of Hawaii Institute of Oceanographic Sciences
Library Room 252 Deacon Laboratory
2525 Correa Road Wormley, Godalming
Honolulu, HI 96822 Surrey GU8 SUB

Marine Resources Information Center UNITED KINGDOM
Building E38-320 The Librarian
MIT CSIRO Marine Laboratories
Cambridge, MA 02139 G.P.O. Box 1538

Library Hobart, Tasmania
Lamont-Doherty Geological AUSTRALIA 7001

Observatory
Columbia University Library
Palisades, NY 10964 Proudman Oceanographic Laboratory

Bidston ObservatoryLibrary Birkenhead

Serials Department Merseyside La3 7 RA

Oregon State University UNITED KINGDOM

Corvallis, OR 97331

Mec90-32

50272-101

REPORT DOCUMENTATION . REPORT NO. L 3. Repient's Accession No.
PAGE T WHOI-90-22

4. Title and Subtitle 5. Report Date

VOICE - A Spectrogram Computer Display Package 6.June,1990

7. Author(s) a. Performing Organization Rept. No.
Ann Martin, Josko A. Catipovic, Kurt Fristrup, and Peter L. Tyack WHO 90-22

9. Performing Organization Name and Address 10. ProJectfask/Work Unit N.

The Woods Hole Oceanographic Institution 11. Cont (C t(G) No.
Woods Hole, Massachusetts 02543 (C) N00014-88-K-0273

(0) N00014-87-K-0236
I R29 NS25290

12. Sponsoring Organizatio Name and Address 13. Type of Report & Period Covered

Funding was provided by the Office of Naval Research, the National Institutes of Technical Report

Health, and the Andrew W. Mellon Foundation. 14.

15. Supplementary Notas

This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept., WHOI-90-22.

16. Abstract (Umit: 200 words)

A real-time spectrogram instrument has been developed to provide an inexpensive and field-portable instrument for the
analysis of animal sounds. The instrument integrates a computer graphics display package with a PC-AT computer equipped with
an A/D board and a digital signal processing board. It provides a real-time spectrogram display of frequencies up to 50kHz in a
variety of modes: a running display, a signal halted on screen, successive expanded views of the signal. The signal amplitude may
also be displayed. Portions of the scrolled data may be saved to disk file for future viewing, or as part of a database collection. The
screen display may be manipulated to adapt to special needs. Program source listings are included in the text

17. Document Analysis a. Descriplors

1. spectrogram
2. digital signal processing
3. bioacoustic analysis
4. computer software

* b. IderllflersOpen-Ended Terms

c. COSATI Fieldlroup
Is. Avallablllty Statemen 19. Security Clam (This Report) 21. No. of Pages

Approved for publication; distribution unlimited. UNCLASSIFIED 96
20. Securlty Class (This Page) 22. Prim

(See AN1SI-Z11.IlU) Se knmctlone on Revere OPTIONAL FORM 272 (4-77)
(Forme NT&S-35)
Dsperpmeni of Commeros

